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The equations of the steady state, compressible inviscid gaseous flow are linearized in a form suitable
for application to nozzles of the Laval type. The procedure in the supersonic phase is verified by com-
paring solutions so obtained with those derived by the method of characteristics in two and three
dimensions. Likewise, the solutions in the transonic phase are compared with those obtained by other
investigators. The linearized equation is then used to investigate the nature of non-symmetric flow in
rocket nozzles. It is found that if the flow from the combustion chamber into the nozzle is non-symmetric,
the magnitude and direction of the turning couple produced by the emergent jet is dependent on the
profile of the nozzle and it is possible to design profiles such that the turning couples or lateral forces are
zero. The optimum nozzle so designed is independent of the pressure and also of the magnitude of the
non-symmetry of the entry flow. The formulae by which they are obtained have been checked by
extensive static and projection tests with simulated rocket test vehicles which are described in this paper.
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186 A. G. WALTERS

INTRODUCTION

Extensive investigations have been carried out in the last few decades on the factors responsible
for the notorious random flight deviations of unguided rockets. The manner in which these occur
is well known. The direction of the missile axis is changed by relatively small turning moments
aboutits centre of gravity and the resulting departure of the thrust line from the intended direction
is responsible for the flight deviation. It is known that the displacement of the line of thrust from
the centre of gravity makes a major contribution to these turning moments. The effect of
mechanical tolerances can be largely eliminated. These result in the centre of gravity being off
the line of the nozzle exit cone axis but the malalinement can be removed by the simple expedient
of balancing the rocket on a mandrel which is a good fit to the nozzle exit cone. In addition the
design must be such that negligible distortion can arise from the pressure and temperature during
burning. However it is found generally that the turning moments remain just as large and it has
been established that these arise from the departure of the thrust line from the nozzle exit cone
axis. Thus it is necessary to ascertain whether it is possible to design a nozzle such that the
effective thrust line of the emergent jet lies along its exit cone axis even though the flow from the
burning chamber is non-symmetric. The following notes outline the method of approach
adopted in this paper to achieve such a design.

The validity of the classical equations of the one-dimensional flow in supersonic nozzles is well
established and in this paper the two and three dimensional flows are treated as perturbations of
these. In other words it is assumed that the lateral velocities are small compared with the axial
values. By this means it is possible to linearize the equations in forms applicable to flows which
are non-symmetric with respect to the nozzle exit cone axis.

The adequacy of the linearized equations in the supersonic phase are checked by comparing
their solutions with the numerical values obtained by the method of characteristics. The throat
region requires special treatment. If R is the radius of the boundary profile at the throat and D the
throat diameter, the ratio R/D is a critical parameter for this determines the extent of the varia-
tions in the pressure and velocity across the throat section. It is generally necessary to maintain
this ratio at as low a value as possible for, amongst other things, this reduces the length and weight
of the nozzle. Symmetric flow in the throat region has been investigated by a number of workers
and the solutions they obtained are used to provide a check on the linearized equations.

By these means it is established that the linearized theory predicts the mean value of the flow
angles across a section with adequate accuracy, provided the ratio R/D is not too small. With this
condition and using further equations derived from the force and moment diagrams, it is possible
to obtain the lateral momentum and the parallel displacement of the axial component of the
thrust to the second order of small quantities.

It is demonstrated theoretically that it is possible to design a nozzle such that the turning
moment about the rocket centre of gravity arising from the thrust in the emergent jet is zero even
though the flow at the throat section is asymmetric. The design is independent of the pressure in
the burning chamber and of the magnitude of the asymmetry at the throat. Equations are derived
by means of which this nozzle can be obtained.

The experimental programme was planned to check the validity of the principle and the
accuracy of the equations in specifying the optimum nozzle. The initial experiments were
carried out with small scale model rockets in which the flow asymmetry at the throat was obtained
by machining the inlet cone at an angle to the exit cone axis. In the first experiment the nozzle
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exit cone was 6.6° total angle and at this small value the linear theory could be expected to
‘be valid. The close agreement between the theoretical and experimental results obtained is more
remarkable when it is realized that the mean particle acceleration across the throat section
exceeds 108 m/s2. The subsequent experiments were carried out at larger cone angles and these
were followed by flight tests with full scale test vehicles. The results confirm the theory to within
the limits of the experimental errors.

1. THE DERIVATION OF THE LINEAR EQUATION OF THE FLOW IN
A TWO-DIMENSIONAL NOZZLE

The one-dimensional solution of the equations of irrotational compressible flow in a Laval
nozzle is well known. Briefly the solution may be expressed in the following form.

Ficure 1. A typical Laval type nozzle configuration.

"The contour of the gas conduit of the nozzle is given in figure 1. CE is the throat, i.e. the
minimum cross-section at which the Mach number is unity. If 4; is the area of the throat and
A the area at another section of the conduit, the Mach number M at that section is given by the

relation 9 (y+Dity—1)
AV L[ 2 [ y=1, )]0 , (1.1)
Ay M?2 v+1 2

¥ being the ratio of the specific heats at constant pressure and constant volume.

The Mach number is the ratio of the local stream velocity to the local velocity of sound. The
ratio of the local stream velocity at a given section to the stream velocity at the throat is denoted
by w which is related to M by the equation

w? = (y+1) M2[{2+ (y—1) M2} (1.2)

The pressure and density at the specified section are given by the equations
_ _7/_ 1 2 yi(y—1) _ _,}, —1 . 1(y—1) 13
1’—‘[’0[1 ,),“—+“1w] s pP=po|l _—_—’}/-l-lw > (1.3)

where p, and p, are the stagnation values.
13-2
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The exact equation of the two-dimensional irrotational inviscid flow may be expressed in

the form (Shapiro 1953)

0%} 0%¢p 0%}
2 _ 2 1_ 1 2__ g2y r1 1.4
(a® —u?) PP 2uvaxay+(a v?) R 0, (1.4)

u and v are the stream velocities along the x and y directions respectively, ¢, is the single-valued
potential from which they arc obtained, i.e.

o _ o, )
u=—==, v—-@, (1.5)

and « is the local velocity of sound which is given by the equation
@ = aj—3(y —1) (¥ +07), (1.6)

a, being the velocity of sound in the reservoir. This is related to the velocity of sound at the throat,
ay by the equation

ay = 3(y+1)a. (1.7)
Equation (1.1) can be expressed in the form
A A[y+1 y—1 ]-4o=D
ol - (1.8)

It is assumed that the slopes of the boundaries are continuous everywhere and, in addition, the
curvature at the throat is continuous. The reason for the latter assumption is given later.
We write in the case of two-dimensional flow

wi = (u2+7)2)/a%’ v = 02/0%9 ¢ = ¢1/ab; (1‘9)
so that (1.4) may be written

hl ¢wx + 2ﬁ3 ¢x1/ - }12 gbyy =0, (].. ].O)
where

hy =wi—1=20%/(y+1), hy=1—(y=Dui/(y+1)=25/(y+1), hy=2¢,0,/(y+1). (1.11)

We attempt to linearize this equation in such a manner that its physical characteristic lines
agree closely with those of the linearized equation. The principal axis of flow is taken as y = 0 and
in the first instance it is assumed that the flow is symmetrical about this axis, the boundaries being
given by

y = ty(x)

so that A = 2y;. The minimum section or throat at which w = 1 is taken at x = 0.
Differentiating (1.8) with respect to x we obtain

dw _1-{(y=1)/(y+ }w*w dy,
dx w?—1 y, dx’

(1.12)

The gradient of the boundary at the throat section is zero so that for small values of x
w=1+wix, dyf/dx = xRy,
and substituting these into (1.12) we find

wp = ((y+ 1)y R)~F (x = 0). (1.13)



NON-SYMMETRIC FLOW IN LAVAL TYPE NOZZLES 189

Ifthe derivatives of y, are of the first order of magnitude of small quantities, it is seen from (1.12)
that w’ is of the same order at positions away from the throat but near and at the throat it is a
large quantity as shown by (1.13). The rate of mass flow m is

Yy
m = 2f pudy.
0
Writing w} = w4 A
and neglecting terms of order higher than A% and ¢2 it is found that

m—m, (w?—1)A {

T BTy =Dy 0y T

g P EB=y) (= 1))
Swtfy +1- (y— Duie

where

my is the value calculated from one-dimensional theory and the bars denote the mean values
across the sections perpendicular to the principal axis. Since w = 1 at the throat, m differs from
m, by terms of the second order and away from the throat A, the mean value of A across the
section, is of the second order. The thrust of the flow crossing any section is

T= ZJ (p+pu?) dy,
and neglecting terms higher than the second order, this becomes

T [] _ Xy (w?—1) A2(yw? ?’) 2yt ]
B (W) {y+ 1= (y-1w } 2w ) {y+1—(y—Dwp (y+1) (w+1)
T, being the value calculated from one-dimensional theory.
The rate of mass flow is independent of x so that

d (m—my\
(T;c( mg )—O,

and since the boundary gradient is zero at the throat

From these two equations it is found that

1 d/\34y2+2

X - v2 =0 1.14
A= dww’ dx 2 7/4—101 (x=10), (1.14)
1 de? y+1
and ot 0

so that A is of the second order throughout.
The variable y is replaced by Y defined as

Y =y, (1.15)

where a is some function of x the derivatives of which are assumed to be of the first order. Along
lines of constant ¥

Ay = YAa, Ag =3 ¢A +Ya¢
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. (@), = @), are
ond (&), = &), &al|E), 5]
Substituting this into (1.10) and equating the coefficient of ¢,,, to zero gives
%3_;‘(1@— i —721%1) ~ g (= e, = 0. (1.17)

In the first instance we consider this equation at positions close to the axis y = 0. The slopes of
the physical characteristics of (1.10) are given by

dy/dx = tan (0 +),
and along these lines df = do,

¥, fand 0 being the Mach angle, the Prandtl-Meyer expansion angle and the flow angle with
respect to the principal axis respectively. At points close to the axis

v, = w0
so that Y _ w,0 = (_wL.di[) )
Y Y tanyrdx/,_,
=1 \idw 1= {(y= D+ D} ui)
Also df = ( ' ) —1 tany = ( 1) ’
V=\mm=uerora) w0 Y A
Uy wi—1 dw,

so that PR {CORE Yy oo} v o

Substituting this into (1.17) and neglecting v%, we have

lda 2 wy wy
adx  y+11—{(y—1)/(y+1)}w?’

_ —')/_.1 0 =1(y—-1)
oc—k(l y+1w1) .

(1.18)

A similar result can be obtained if it is assumed that w, is sensibly equal to w and that v, is small
and varies linearly across the section so that

_w dy,
7)l_ylydx'

Substituting this into (1.17) gives

ade ~ y+1lw'—1y, dx"

Applying (1.12) and integrating produces the same form for « as (1.18) but with w, replaced
by w and this can be written with thé aid of (1.8),

a = kwy,, (1.19)
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the terms £ being constants. A more detailed analysis suggests a closer value to be

y—1— 2 =\l
1— wd— 2 .
k( T lvl) , (1.20)

the bars denoting the mean values across the sections perpendicular to the principal axis.
In the first instance we consider that region downstream of the throat in which the flow is
supersonic. The variable x is replaced by X defined as

X=L a(}l +}: /h) dx (x> 0), (1.21)

the term in the bracket in the integrand being given its mean value across the section and € is a
small quantity defined by

dx/dX =0 (x=c¢). (1.22)
Consider the differential equation
02 0% _ .
(a—z?—z>y~(a—w)X+F(X, Y) =o. (1.23)

X and Y are not independent variables and in terms of X and y the equation can be written with
the aid of (1.16) and (1.17)

02 2hy dx %) . 1 2Py a¢ d2e _ .
(a_')@)f 7, AX3X 0y [“ 7 (dX) ] tayan TH&T) =0 (1.24)
The slopes of the physical characteristics of (1.10) are given by
Y Thyt (8 4+ (1.25)
dy Aydx
and those of (1.24) by ix= /zldX”
dy hy dX
or d_x }l_l + Ota—;c‘, (1.26)

and from the definition of X we see this is of identical form to (1.25). The slopes given by (1.26)
are independent of y but at each section the value is the mean of those of (1.25).
By applying (1.16), (1.17) and (1.21), we can write (1.23) as

hat il 0p\ (dr\*d2X  _0g 2 (do\?
b+ 2y b, — sy, + 2L [F(X ¥)— (a?z) (djf) dx2+y£d—9§-(ﬁ>]=0. (1.27)

At positions away from the throat, the differentials in the first three terms are of the first order
and the last two terms are of the second order. Thus if we write F(X, Y) = 0 the equation is of the
same form as equation (1.10) to the first order, the coefficients £ having their mean values across
the sections.

At positions close to the throat, the term ¢, is of the order w and, omitting second order terms,
¢4 18 w;, which has been shown to be a large quantity. Writing

w? = wr4A, hy = h+2,

then to the first order Ay ¢y = Ay oy + Aw( = hy b+ 20wy (b — w).
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The last term of (1.27) is of the second order at the throat, thus if we write

0p\ (dx\Pd2X | (dx\*[0p dX
F(X,Y) :( ¢) (dj‘\,) o7+ 2w (a%) [%—(H——w}/hl,

(1.23) takes the same form as (1.10) to the first order. At positions close to x = ¢

2 (x~e) T = 9w (x—e
Oﬂt{’)/-l-l) t}nvh =2 t( )7

to the first order, and with these forms
1 (09 o o
F(X,Y) = _X(_OX)Y — (y+1) atwuy.

The equation (1.23) can be written

(52) - (52) +5(3%) = o+ natur, (1.98)

where § = 0 away from the throat and £ = 1.0 close to it.

It is advisable in problems of this type to obtain a solution which satisfics the boundary condi-
tions exactly. This is the basis of the Galerkin method in which the solution is expressed as a series
of simple polynomials each of which satisfics the boundary conditions exactly and the constants
in the polynomials are chosen so as to give the best fit to the differential equation by the method
of least squares. The boundary conditions to be satisfied are

¢y = i¢xdy1/dxa ¥y =ty
and (1.23) is not in a suitable form for satisfying these. We introduce a new function defined by
v
D = wf £‘b—”dy. (1.29)
0 Wy
If we omit third order terms this becomes

@ =[98~ [ A .

It is shown later that the second term on the right-hand side is of the third order when y = y,
but in general it is a second order term. If it is omitted (1.23) takes the form

0> RP\ £ (0D ‘_
(6—)(2)_17(6_Y'2)A\7+)—((6_X),,+F1(X) =0, (1.30)

the last term being a function of X only.

By definition 0PfOY = awsin 0, (1.31)
0 being the flow angle. Also
0 0 Yda @ . dx
<0X(ocwsm0))y= (ﬁ(awsm())) T dx OY( wsm(/)d—X
. dx 0 dx
and since ix= 0 (X=0); X(cxw sinf) = e (awsin 0) = X

we have (aX(ocw sin ()))y =0 (X=0). (1.32)
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The differential equation and boundary conditions can thus be written

(W)Y+§(M)y = (M))X (X >0, —ypyfo <Y < yyfa), (1.33)

0X2 X 0X oY?
oawsinf = +owsinby, ¥V = +y /o, (1.34)
awsinf = g(Y) (X = 0). (1.35)

These together with (1.32) are sufficient to obtain the flow angle throughout the exit cone
where 6, is the flow angle at the boundary and the function in (1.35) is obtained from the sub-
sonic region as will now be demonstrated.

The definition of X as given by (1.21) is valid only in the supersonic region for it assumes
imaginary values with subsonic flow. A new variable is introduced for the latter case defined as

X, = f ( ”2”‘2/"1) dr (x <e), (1.36)

the term in the bracket in the integrand having the mean values across the sections perpendicular
to the principal axis and ¢ has the same value as in (1.21) so that

Xi=dx/dX, =0 (x=¢).
Equation (1.33) is replaced by

02 *(awsin 6
(aXz(ocws1n0))Y+ d (aXI (ocwsm@))y.y(_(m__))x =0 (X;<0,—yfa <Y <yfa).

(1.37)

The boundary conditions (1.32) and (1.34) remain the same but with X; replacing X but that
given by (1.35) is no longer necessary since (1.37) is elliptic.
One further condition is necessary and it is generally sufficient to write this as

owsinf =0 (X;—>—o00). (1.38)

Equations (1.32), (1.34), (1.37) and (1.38) are sufficient to obtain the complete solution in the
subsonic region and in particular the value of 6 can be obtained at X; = 0 which determines the
function g(Y) of (1.35).

The solutions are complicated by the form of £ The following procedure is adopted in the
subsequent sections. In §§ 2 and 6 the numerical solutions obtained by the method of character-
istics in the supersonic exit cone are compared with the values obtained by this linearized theory.
The examples taken are hypothetical in so far that entirely parallel flow is assumed at the throat
sections. In these cases all the terms of the differential equation are identically zero at the throat
section. Further the values of £ fall rapidly in value outside the curved portion of the nozzle and if
small values of Ry/D are assumed, D being the throat diameter, it suffices to take £ = 0 throughout
the exit cone. By this means trivial analytical solutions can be obtained from which the nature of
the flow is easily appreciated.

The transonic region is investigated in §§ 3 and 7. It can be shown that the characteristics of
the flow at the throat for a specified stagnation pressure are determined almost entirely by the
local boundary conditions and £ can be taken as unity.

The propagation of non-symmetries in the flow is investigated in some detail in §§4 and 8.
In the approximate analysis £ is taken as unity in the curved portion of the nozzle and zero
thereafter. In the final analysis the correct values of £ are employed which leads to equations
which must be integrated numerically.

14 Vol. 273. A,
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2. THE VALIDITY OF THE LINEAR EQUATION IN THE TWO-DIMENSIONAL
NOZZLE EXIT CONE

The limits of the variable Y are a complicated function of X and in general it is not possible to
obtain the solution of (1.33) in analytical form. In this section some approximations are made to
the linearized theory which enable us to obtain such solutions. The method of approach is best
illustrated by expressing the slopes of the physical characteristics of (1.10) in the form

dy/dx = tan (0 + ),

Y and 0 being the local Mach angle and flow angle respectively. Thus the flow causes a net
rotation of the characteristic lines through an angle . The variable y is replaced by ¥ to com-
pensate for this as can be seen from (1.26). Approximately

a=wy, Y=ylwy,

as can be seen from (1.19). Both w and y, are increasing functions of x in the supersonic region and,
apart from the throat region, y, increases more rapidly than w. For example increasing y, from yi,
the value at the throat, to 4y increases w from 1.0 to 2.07 approximately for y = 1.25. Thus if we

rite
N a=y;, Y =yly, (2.1)

we partly compensate for the net rotation of the characteristics and also the limits of ¥ are
-1<¥Y<1
This approximation is discussed further in § 8. If in addition we omit second order terms, we have
1 (1—{(y-1 1)} w?\z
0 Y1 w?—1
The solution of (1.37) with £ = 0 subject to the boundary conditions (1.32), (1.34) and (1.35)
takes the form
wy,sin @ = §g(Y+X) +g(¥Y—X)]
+F (X =14+Y)-F(X-3-Y)+F(X=5+Y)-F (X-7-7Y)...
+E(X=1-Y)—Fp(X=3+Y)+Fy(X=5-Y)-F (X-7+7)...,

where g(Y) specifies the conditions at the throat (eqn (1.35)) and

Fy(X) = h(X) - hg(1 - X),

Fy(X) = —h(X)  bg(X ~ 1),

h(X) = wy, sin 0y,
and gY)=0 (]Y] > 1.0). (2.3)
A check on the analysis is obtained by comparing this solution with that obtained numerically

by the method of characteristics. The example taken is illustrated in figure 2. The radius of
curvature at and just after the throat is a constant value Ry = §D, D being the throat diameter,
and the curved portion of the profile blends into the straight portion so that the slope is continuous,
the cone semi-angle being sixteen degrees. The flow at the throat is taken as parallel so that

g(Y) = 0. We compare the stream pressure variations across the semi-nozzle as obtained by the
two methods, i.e. the difference in pressure between the axis and boundary at the various sections.
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From (2.3) with g = 0 we obtain

U X
wa sin 0 dy =f h(u)du (0 X <),
( 0

)

=fx h(w) du—f;_l}z(u) du (1<X<2),

X—1

X X—-1 X~2
=f h(u) du—-f k(u)du-{-f Muydu (2<X<3),  (2.4)

...................................................

152mm ‘\152 mm
!

A

|
oy

| l
152mm*
| ]

1

by

)

Ficure 2. The nozzle configuration used in the calculations.

The velocity variation across the section is

.. Ag = (¢z%+ ¢121);}/“ll1 - (¢w)y=0)
and to the second order this is
Aq = (¢a:)y=z/1 - (¢w)y=0 + é—w sin? 01,
=d[¢(x,y1) — P (x,0)]/dx — fwsin?0,,

. 9 d¢ - _
since to the second order 3 = dp Vs 0, (y=uyy).

Omitting third order terms in (1.29) we obtain

Y1 . 1 Y
B, 12) — $(x, 0) =f0 ws1nl9dy+2—-w2f0 A, dy.
The second term on the right-hand side is a third order term, thus to the second order

_d " Lo ein2 6
Ag = a—x(wjo smOdy) —twsin?0,,

the first term on the right-hand side of which is obtained from (2.4).

A large scale characteristic diagram was drawn with a throat diameter of 304.8 mm which is
reproduced on a much reduced scale in figure 3, the rays representing 1° expansion waves. In
each element of the grid, the flow angle and the Prandtl-Meyer expansion angle can be readily
obtained; the latter is the minimum number of expansion waves that must be crossed in pro-
ceeding from the throat to the element. The values of w; can be obtained from these using the
appropriate tables and thus the value Ag. The ratio of the specific heats is taken as 1.25.

The pressure difference across the section can be obtained from (1.3) and (1.8) in the form

2

Ap — yity=1) A
1)-~(m) YboytAY1. (2.5)

14-2
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The continuous curve in figure 4 is obtained from the analytical theory and the discrete points
from the characteristic diagram. The pressure difference is seen to be oscillatory. The agreement
is reasonably good but there is clearly a systematic error, the positions of the two maxima being
displaced from each other. This is probably due to the approximation made in et in (2.1). This is
demonstrated more clearly by applying the analytical theory in the following manner,

the throat; 1° expansion waves, y = 1.25.

0.05- X xooce
Xk .
XX 9 x /D
3 1

0 T "M 4

X

—0.14

Aplpe

—0.2

—0.3-
TFicurke 4. The pressure difference between the axis and the wall of the nozzle of figure 2
assuming parallel flow at the throat, stagnation pressure py.

In figure 5, the semi-nozzle of ﬁgufe 3 is turned through 8° so that it represents a nozzle of
16° total angle but which is asymmetric in the region of the throat. The x axis is taken as the
bisector of the exit cone. The method is illustrated in figure 5. The boundaries of the nozzle are

taken to be O,E; and O,E, while O,0, is taken to be the throat so that the flow angle at O, is
that at O, namely, minus 8°, and the flow angle at any other point Q, is taken to be that at Q , the
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displacements QQ) , being quite small compared with the throat diameter. The value of w at the
section Q,Q , is obtained from the expansion ratio QQ ,/OO,, i.e. we assume the mean Mach
number across OO, is unity which is approximately correct as can be seen from the characteristic
diagram. With this method of treatment the maximum values of the lateral velocity are halved
so that the second order terms are reduced by a factor of the order of 4. The analysis is similar to
that given previously with the boundary conditions

wyysin@ = wy,sinf, = H(X) (Y =1),

Ficure 5. The nozzle with the symmetric exit cone but with the asymmetric throat obtained by
the rotation of figure 2 through 8°.

The solution is given by (2.3) but with
Fy(X) = Hy(X) - [¢(1-X)]/2,
Fy(X) = — Hy(X) ~[g(X-1)]/2,
where gY)=—ysin8 =H, (—1<Y<1),
=0 (|Y]>1), (2.6)

y being the value of y, at the throat.
The solution can be expressed in the form

1 X
wfy sin 0 dy =f Hu)du—-2(1-X)H; (0<X<2),
0

=

b X2
-=f H(u)du—2 Hu)du—2(X—-3)H; (2<X<4),
0 0

X X-2
=f0 H(u) du—2f0 H(u) du+2fO Hu)du—-2(6-X)H,; (4<X<6),

X X2 p'e X—6
_ f Huydu—2 (" H@dur2 [ Huw du—2 [ H@) du—2(x-7) H,
0 0 0
(6<X<8),

.....................................................................

where H(X) = H,(X) — Hy(X). (2.7)



198 A. G. WALTERS

The mean values of 0, i.e. 8, across. the sections so obtained are presented in figure 6 together
with those obtained from the characteristic diagram; in the latter case they represent means
across lines at 98° to the principal axis of the cone of figure 3. Beyond the point C in figure 3,
i.e. the junction of the curved and straight portions of the boundary, the term H is zero since
0, is 8°. Thus beyond C the theoretical curve is periodic with the semi-wavelength given by
X = 2. We find from the characteristic diagram that the mean values of sin ¢ are zero at values
of 2y, of 172.3 mm and 248.5 mm and with the correct throat 2y; = 152.4 mm, the corresponding
expansion ratios are 1.1305 and 1.6305 respectively and the Prandtl-Meyer expansion angles
are 0.1746 and 0.4560 radian respectively. As we sec later these give a semi-wavelength of

(eqn (2.9))

1
X = ——[0.4560 — 0.1746] = 2.0022.
tan 8

O/deg

Ficure 6. The mean value of the flow angle across the section of the nozzle of figure 5 assuming
parallel flow at the throat. (i) Linearized theory, (ii) characteristic diagram.

This remarkable agreement is unlikely to be fortuitous. Two additional large scale character-
istic diagrams have been constructed with y = 1.4. The cone semi-angles are 8 and 16° respec-
tively with Ry/D = 1.0 in both cases. A similar analysis was carried out with both of these and
the results are given in table 1.

Figure 6 reveals further evidence of the systematic error due to the approximation of «, the
discrepancy at the maximum being reversed at the minimum. Apart from this there appear to be
no extraneous damping factors and the linearized equation reproduces the results of the more

accurate treatment fairly closely.
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In general it is necessary to compute X but in particular cases it can be expressed in functional
form. For small values of x it becomes

X—&EJQJ?<M,-E«_i,f
y+1) yJo Quix)t  y\(y+1)wy)

yt being the throat semi-diameter and wy is given by (1.13). A more accurate form can be obtained

by writing w=14wx+Iwix2+...,

o Wl = (w)? (1- ),
and substituting it into (2.2).

TABLE 1
8° semi-cone 16° semi-cone
e A} (e Al
Yaly, X AX Yuly, X AX
1st zero 1.058 1.41 1.05 1.17 1.43 0.95
minimum 1.133 2.46 0.89 1.38 2.38 1.01
2nd zero 1.212 3.35 1.08 1.74 3.39 0.95
maximum 1.332 4.43 0.99 2.25 4.34 1.05
3rd zero 1.48 5.42 0.97 3.15 5.39 0.99
minimum 1.65 6.39 1.03 4.60 6.38
4th zero 1.88 7.42 0.99 mean AX =  0.992

maximum 2.15 8.41 0.96
5th zero 2.48 9.37 1.04
minimum  2.94 10.41

mean AX = 1.000

In the nozzle of figure 2, the radius of curvature Ry is constant and this fits into the straight
portion, the slope being continuous at the junction at x = x,. For values of x less than x,
approximately

I R S LR
’yXW+UM)u Lyxw]) (0 < x < xo). (2.8)
Using (1.12) for values of x greater than x, we have
dx (v w?— 1 tdw
ronek | .
O dyJu U ={y = D[ (y + D}w?) w

X, and w, being the values at x,. This becomes
d
X = Xy +[f(w) ~f(wy)] /-dy; (x > ), (2.9)

f(w) being the Prandtl-Meyer expansion angle. These are the values of X used in the analysis
in this section.

3. THE VALIDITY OF THE LINEAR EQUATION IN THE THROAT REGION
OF A TWO-DIMENSIONAL NOZZLE

The entry cone appears as in figure 1. The curved portions fit into the straight line generators
which expand into a very large reservoir. The method of approach is similar to that used in the
supersonic region. The values of & and Y are given by (2.1) and omitting second order terms

O N (S AR,

“Jowns 1 —w?

)%dx (—0o<x<0), (3.1)

so that X; = 0 at the throat with negative values in the entry cone.
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The general solution is given in a later paper where it is shown that the throat region is of
considerable importance and it is the purpose of this section to verify the analysis in this region.
With the approximations already specified, (1.37) reduces to

§

X, E)X (wy,;sinl) =0 (X, <0, -1 <Y <1), (3.2

(wy1 sin ) + (wy, sin 0) +

02
0X2 RYE

with the boundary conditions
0 (wy,sin0)[0X; =0 (X, =0),
sinf = +sin; (Y =4+1).

This can be solved analytically for both § = 0 and £ = 1 but the analysis is tedious. It has been
carried out for the analogous problem in three dimensions and it has been found that the flow in
the throat region is determined almost entirely by the boundary profile in this region and is
unaffected by upstream conditions. Thus we should take £ = 1.0 and it is possible to solve the
problem by series method.

Combining (1.12) and (3.1), we find

wy,sin0; = —w'(dx/dX)?cos 0. (3.3)
Also at positions near the throat
w' = wy+wpx+ 3wl 2+ .., (3.4)
” ! 5 " ’ 3— 2 7 +
o = (1 -2y19), = | STy ),

Similarly for small values of x

_o2( ot N g e [ () 1]
X = yt(<y+1>wg)( ")E[l" 5 ’“{720 (45+ 63y +2v") + gome) |

w(y+ DRXI[ VY 1 Xi(yi\?[45+ 63y +2y> T2 y+1y o =
1 1 18RtX1+ o\ ) T 360 4 e . (3.5)

and & =-— 360 81 7 40 R,

Combining (3.3), (3.4) and (3.5), we have
wy,sin 0, = —aX?+bX{—cX§..., (3.6)
where a = yuly + 1)} (5/Ro)¥ 4,
b = ayy(9 + 2y)[36Ry,

= o(f) (S 3mam) (7)o
The solution is expressed in the form
wyy sin 0 = wy, sin 0, Y+, §,OA2,LX§"+S3 §0 By, X2+ .., (3.7)
where S, =Y3-7, " "
S, = (3Y5—10Y3+7Y)/[60,
S5 = (3Y7-21Y%+49Y3—-31Y) /2520

5
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so that Soni1=0, Y=2x1, (n>0),
d®Sg 1 /dY2 =85, (n 2 1),

and the terms 4, B, C... are constant.
Substituting this into (3.2) with £ = 1 we obtain the recurrence relations

64, = 4a, 44, + B, = 0, 4B,+Cy =0, ...,
64y = —16b, 164,+ B, =0, 16B,+C,=0, ..., (3.8)
64, = 36c, 364,+B,=0, 36B4+C,=0,

At the throat yisin 0 = 2aS; + 22083+ 38455¢.... (3.9)

The variation of the axial velocity across the section can be obtained from (1.29) and (1.31) in

the form
¢ AN ., 10 ifﬂ )
(5;)2/—(5;)0—~ ), wylsm0dY+—2-a(w2 . Ag,dy ). (3.10)

The differential equation (3.2) with £ = 1 can be written

o (¥ . 1 XIX"a 'OMYdX
EY—lfo wy;sin0dY = —;Y—lf 1[-a—l—/(wylsm )JO 15

0

orr 1dXz[, @ Ay, X & By, Xi ]

o it | < ) en 3.11
and thus axfo wy,sin0dY 5 dn [K1n=0—2n+2 +K3n§=.;0 e | (3.11)
where Kop i1 = [dS504a/dY ],

and the differential of X% is obtained from (3.5
Since A is of the second order then from (3.

Af2w = (§Y2 =) yi/ Ry,
and 0 = Yx|Ry+ (Y3=Y) (y+ )by} [6RE,

)
9), (3.10) and (3.11)

to the first order and these enable us to determine the second term on the right-hand side of (3.10)
to the second order.
At the throat we find

G (y) — b, (0) = y[36K, Ry + (144 + 32y) Kyyy + (27Y*— 18Y2) y,] /216 R} (3.12)

to the second order.

The transonic region has received considerable attention from other investigators. Meyer
(1908), Taylor (1930) and Hooker (1931) expressed their solutions in power series which termi-
nated at the fourth order but these are not entirely satisfactory since the higher order terms of y
aresignificant near the boundary. Their methods were developed by Sauer (1944) and Oswatitsch
& Rothstein (1942) whose solutions agree to the first order and are a valid first approximation.
This was later obtained by more sophisticated methods by Behrbohm (1950), Tomotika &
Tamada (1950) and Tomotika & Hasimoto (1950). The nature of the flow was investigated in
detail by Lighthill (1947) who pointed out that in the supersonic region y must be a three valued
function of 0, a property possessed by Sauer’s solution. More recently an extensive analysis was
carried out by Hall (1962) and his results appear to be the best yet obtained in both two and
three dimensional flow. He expresses the flow angle and velocity to the third order in 1/R;

15 Vol. 273. A.
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whereas the earlier solutions are valid to the first order. Hall has evaluated the velocity distribu-
tion across the throat for Ri/y; = 5.0 and his results are compared with those of (3.12) in table 2.
The agreement is good. The solutions of Sauer and Hall are identical to (3.7) and (3.12) to the
first order.

TABLE 2. VELOCITY VARIATION ACROSS THE THROAT

Y Hall equation (3.12)
0 0 0

0.2 0.0032 0.0032

0.4 0.0133 0.0130

0.6 0.0305 0.0303

0.8 0.0561 0.0563

1.0 0.0923 0.0929

It should be noted that the approximation made in « is reasonably correct in the exit cone.
"The velocity ratio w decreases in the subsonic region away from the throat and the approximation
would appear to be invalidated. However, the conditions at the throat are determined by the
profile slope in the immediate vicinity and little serious error arises. A more exact treatment is
given in a later paper.

Itis clear from the above analysis that ¢, is continuous provided the profile slope is continuous
but the continuity of ¢, requires the curvature at the throat to be continuous also. This can be
demonstrated by examining (3.11). The term in the square brackets is determined by the
entry cone and

dX3 4
dr — wily + 1)

(X, = 0).

Equation (1.12) is valid in the entry and exit cones and by taking the limit as x approaches zero
we obtain the value of wg given by (1.13). The limit can be reached from the entry or the exit side
and if Ry is discontinuous at the throat, the two limiting values differ so that ¢, is discontinuous.
It would appear that an isentropic solution requires that the curvature be continuous at the throat
but elsewhere it is sufficient that the profile slope be continuous. The pattern of the flow that
would otherwise occur is probably similar to that observed photographically by Fraser, Rowe &
Coulter (1957). Small shock waves are attached to the boundary just ahead of the throat causing
the flow to separate with re-attachment in the exit cone just after the throat. Slip streams parallel
to the axis proceed into the exit cone from the throat boundaries, together with the characteristic
diagonal shock pattern. These effects were observed with a discontinuity in profile slope at the
throat but a similar phenomenon is likely with a discontinuity in curvature but to a lesser extent.

4. NON-SYMMETRIC FLOW IN A TWO-DIMENSIONAL NOZZLE;, THE
DERIVATION OF THE LATERAL FORCES AND COUPLES

It is assumed that the nozzle is symmetric but the flow is asymmetric due to upstream effects.
That is, we require to determine the magnitude of the flow asymmetry at the exit of the nozzle
when the entry flow is asymmetric.

The differential equation (1.10) is valid and ¢ can be expressed in the form

¢ =¢ + (4.1)
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where, with respect to the axis y = 0, ¢’ is symmetric and ¢” is the perturbation which is non-
symmetric. The first term satisfies (1.10) as it represents the unperturbed flow which is discussed
in §1.

If we neglect the second order terms, the parameters £, and £, are the same as in the unper-
turbed flow because they contain the derivatives of ¢’ only. Also to the first order
% 1,

2
2 X 2 P
hy = w?*+ A 7/_H_v + 2w 5

A and v having the values for the unperturbed flow. Thus
Iy B+ 2k By — by By + 200" b = 0, (4.2)

second order terms being neglected, and %, #, and %, being given the same values as those used
in the unperturbed flow as expressed by (1.11). Equation (4.2) has the same characteristic lines
as in the unperturbed flow so that it can be expressed in the form (1.23). In deriving the form for
F(X,Y), equation (1.27) with ¢ replaced by ¢” must be compared with (4.2). Thus

0" ((dx\2d2X | 2ww’ dx
FXY) = W{(d—x) Freh e cﬁ}’
and for small values of x this becomes
1 0g"
F(X,Y) = Tox

At distances away from the throat, F(X,Y) is of the second order so that the function ¢
satisfies (1.28). The subsequent analysis of §1 is valid and (1.33) and (1.37) apply to non-
symmetric flow. This has already been assumed in § 2 and verified by the subsequent analysis.

The asymmetry of flow at the section at x perpendicular to the axis y = 0 can be expressed as
a lateral momentum — L, and a parallel displacement from the axis y = 0 of the thrust 7" by
a distance z. The term 77z is effectively a clockwise couple which is denoted by Cy.

The thrust per unit cross-sectional area is

Ty = prtpu(wi—od) @ = prai(wi+1) (v +1)[2y - proiai,

p, and p, being the pressure and density respectively,

2 (99)* (%)’ 2 _ (22)*
wh = (Ox) + 3 and v} = )
If w} = w?+ A, and v; = v+ Av where, with respect to the axis y = 0, w and v are symmetric

while A; and Av are the non-symmetric parts, and it is assumed that A;, Av and v? are first order
terms so that their products and squares are neglected, then from (1.3)

= 1 — /11
SO VRS ey e 7 &
Thence Ty =aipw+1) (y+1)[2y — i p(M?— 1) A /2 — pad(v? + 20Av),

Y U K2
and Cp = Tiydy = —5(M?—1) pa} Ay dy—pa%f 2vAvy dy. (4.3)
~U ~% —%

The perturbations in the flow angles at the boundaries are zero and at y = +y;,

2wAY = — A, sin 0,

15-2
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so that the integrand of the second integral on the right-hand side of (4.3) can be neglected at the
boundary while y and v are zero at the axis. It can be expected that the perturbation Af in the
flow angle is of an order less than sin 0, so that the second integral on the right-hand side of (4.3)
can be neglected. This is confirmed by the numerical analysis discussed later. The mean value
of M across the throat is unity so that

Cp=0 (x=0). (4.4)
T
The lateral momentum is L =— aﬁj P19 P, dy, (4.5)
it
. _ Ay A —0}
and since P1 ¢:)c = Wwp (1 - &:}Wz) (1 + “W} ,
(/):1/ = ZU(1 + /\1/2202) sin 09
. . W . 2_9 [
this may be written L = —a} pw?sin 0 dy + pa? Avdy. (4.6)
—Y —%

The second term on the right-hand side is of the second order and in this it suffices to write

v = wysin 0,[y,,

so that f " Apdy = 2300 f " Aydy. (4.7)
- oJ-u
Thus from (4.3), (4.6) and (4.7)
% M?2—2sin0
= —q2 2gi ettt ¥ o .
L atf_%pw sin 0 dy M1y, Cy (4.8)

It has been shown in § 1 that the mean value of w? across the section differs from the one-
dimensional value by terms of the order v2. Also from one-dimensional theory the rate of mass

flow is m where
m = 2y, wpat,

may [V . M2—-2C.d
so that L =—- ! w51n0dy———~2————1~—y—1-, (4.9)
201 J —y, M?*—1y, dx
TaABLE 3

x[D 103 LT 103L,|T
0.664 22.03 22.28
0.774 —9.83 —9.76
0.885 2.13 2.33
0.996 11.87 10.71
1.106 18.46 18.76
2.655 11.35 11.44
2.765 8.53 8.57
2.876 4.03 4.04
2.987 0.29 0.22
3.097 —2.47 —2.55
7.5622 —6.30 —6.44
7.633 —5.22 —5.38
7.743 —4.81 —4.93
7.854 —4.31 —4.48
7.965 - 3.39 —3.55
8.075 —2.24 —2.38

8.186 —1.47 —1.62
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This formula has been checked using the characteristic diagram of figure 3 turned through 8°
as in figure 5 so that it corresponds to the flow in a symmetric exit cone of 16° total angle but
with a skew throat. The couple Cy is maximum near the zeros of L and the computations have
been carried out around these positions. The lateral momentum L has been calculated by using
(4.5), the terms in the integrand being obtained from the characteristic diagram.

Also it has been calculated in a similar manner {rom (4.9), this value being denoted by L,.
The results are contained in table 3, in which the two values of the lateral momentum are
expressed as ratios to the axial thrust in the jet at that section.

The agreement is seen to be good, the differences being of the order of possible numerical
errors.

L+AL

Ficure 7. The force system on a section of a two-dimensional nozzle.

One further relation between L and C; can be derived from geometrical considerations.
Figure 7 is a section of a two-dimensional nozzle. If the nozzle terminates at x the lateral force
is L, if it terminates at x +dx the lateral force is L+ (dL/dx) ox.

Clearly dL/dx = (lbl)y1 — (1) g,
Taking moments about O of the forces on the elementary section
L dL P
—ylﬁylg;+ (L +9z 3x) 6x+§(%-8x =0,
so that W——L‘*‘ylaa—;. (4.10)

Equations (4.4), (4.9) and (4.10) enable us to express L and Cy in terms of 7 where
Y1
I=f wsin 0 dy. (4.11)
—W

As an example we take the case of flow in the exit cone when flow in the throat is non-symmetric
owing to upstream eflects. The solution of the differential equation with boundary conditions
given by (2.3) corresponds to the case when § = 0 throughout. In this the flow is entirely parallel
at the throat and also R/D is small so that this approximation is valid apart from a zero error.



206 A. G. WALTERS

The results obtained from the analysis are in close agreement with those obtained by the method
of characteristics, and in all examples it would appear that the values of wsin 6 deduced can be
considered as correct to the second order, even though the differential equation is correct only to
the first order. This may be accepted as a semi-empirical result.

An alternative form of the solution given by (2.3) can be derived. As in § 2 we take a = y, and
¢ = 0. The differential equation is given by (1.33) and the boundary conditions are given by
(1.32) and (1.34). The solution is

wyysind = 3 A, cos{(n+3) w¥}cos{(n+ 1) xX}+AX,Y) (n=0,1,23,.), (4.12)
n=0

where the coefficients 4,, are obtained from the Fourier expansion
gY)= X A,cos{(n+%) =Y}, (4.13)
n=0

and the function f(X, Y) is the part of the solution arising from the boundary condition (1.34)
and is symmetrical with respect to the axis ¥ = 0. Thus

I= 250 (= 1) A, cos {(n+}) nX}/(n+3}) = (4.14)

In general the flow is not parallel at the throat and the analysis cannot be confined to small
values of Ri/D so the assumption £ = 0 is not valid. The general solution takes the form

wyysing = 3 4, cos {(n+3) =Y} K, (X) +/(X, 7), (4.15)
n=0

where the functions K, (X) are the solutions of the equations

d2K, £dK, e oar
axe +XH+(n+E) 2K, =0 (4.16)
with the conditions K,=1 and dK,/dX=0 at X=0. (4.17)

Itis seen in § 1 that wy is a large term but w{ is a small term. Thus w’ is fairly constant in that
region bounded by the curved profile of the nozzle but it falls rapidly in magnitude beyond.
This suggests the following approximation.

§=1, <O<X<X0); £=0, (X>X0), (4'18>

X, being the value of X at the intersection of the curved and straight positions of the nozzle. Thus
K,(X) = J{(n+§) =X} (0 <X < X),

= a,cos{(n+§) nX}+b,sin{(n+%) =X} (X > X,), (4.19)

the terms a,, and b,, being obtained from the conditions that K,(X) and its derivative are con-
tinuous at X = X,. Away from the curved portion of the profile the semi-wavelength is again
X = 2.0.

It is not possible to express L and C in simple analytical form in terms of /. An adequate
approximation can be found in the following manner. To the first order

dCer/dx = —L, (4.20)
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and substituting this into (4.9) using (1.2) and (1.12) we find

dCp _may, Cody, W'
dr 2y, I+ y, dx

—'—Cm. 4.21
2, (4.21)

Integrating this and using the initial condition given by (4.4) we have

Cyp = T4 f U rdx. (4.22)

Substituting this value of Cy into (4.20) or (4.9) yields the value of L to the second order. Thus
__mad [ f = £.2:
L--" dx{w Oy%ldx}. (4.23)

This could be substituted into (4.10) to obtain Cy to the second order.

5. THE DERIVATION OF THE LINEAR EQUATION IN AN AXISYMMETRIC NOZZLE

The procedure is similar to that in the two-dimensional case. The equations of motion are
linearized in an analogous manner and the numerical solutions so obtained are compared with
those derived from the method of characteristics. A section of the conical nozzle containing the

principal axis is as in figure 1. O is the axis and 7, the radius of the section normal to this axis at x
so that
Alde = rifri,

ry being the radius of the throat section at which «x is zero and 4; being the throat area.
It is assumed in the first instance that the flow is cylindrically symmetric with respect to
the Ox axis and the equation of flow becomes (Shapiro 1953)

0%¢ 0%, 2uwd?¢p, 10¢
—y2lg?) L1 22\ 2 F1 1 1_ ~
(1—ufa?) Ox2 + (1~ v%a?) oz g2 0x0r r Or % (5.1)

u and v being the velocity components parallel and perpendicular to the axis respectively so that

_ 0y 0dy
“=w "o

This can be expressed in terms of the non-dimensional velocities of (1.11) in the form

1 2 0,
ﬁ1¢m¢+ 2h3¢xr_h2(¢rr+;¢r) _m'}' ¢r = O) (5'2)

the coefficients £ having the values given by (1.11). From (1.8)

c_A=Aly=1)/(y + 1)} w?2wdr

—_— 59
v w?—1 ry dx’ (5.3)
and taking the limit as x approaches zero
wg = {3(y+1)n R}, (5.4)

Ry again being the radius of the boundary profile at the throat as in figure 1.
Proceeding as in § 1, we replace the variable r by R defined as

R = rfay, (5.5)



208 A. G. WALTERS

in which a, is some function of x, the derivatives of which are of the first order. By differentiating
along lines of constant R we obtain an equation similar to (1.16) but with y, ¥ and « replaced
by r, R and «, respectively. By substituting this into (5.2) and equating the resulting coefficient
of ¢, to zero, we obtain

rafud = 1= 208y + 1} = 2(uf — )by + 1), (5.6)

The mean value of w, across the section differs from w by a term of the second order. On the
assumption that v, is small and varies linearly across the diameter, so that away from the throat

s, = rdn
Yoy da
o 1 day A7y

(5.6) reduces to % dx = 2w (y+1) W= 1)n
and with (5.3) this can be written

doy  oque’

dy — y+1—(y—1)w®
or iy = Kt~ (y = 1) ubf(y + )40,
and from (1.8) oy = kwiry, (5.7)

the terms £ being arbitrary constants.
In the supersonic region, the variable x is replaced by X defined as

X = f (h i/l )dx, (5.8)

the term in brackets being given the appropriate mean value across the section and ¢ is a small
quantity defined by
dy/dX =0 (x=¢). (5.9)

A difficulty arises in the method of averaging the integrand in (5.8). To obtain the correct
mean slope of the characteristics we should average across a diameter but it may be better to
weight the slope by the mass flow, in which case averaging across the section would be appropriate.
Since A is a second order term when averaged over the section (eqn (1.14)) and a first order term
when averaged over a diameter, the values of X so obtained differ by terms of the first order but
the discrepancy is largely confined to the throat region.

Proceeding as in § 1 we obtain the linearized equation in the form

(%)R"U%@%)R (;Z/:) \._1% (%)\ = —F(X), (5.10)

F(X) being a function only of X, £ = 0 away from the throat and £ = 1 close to it.
In order to satisfy the boundary condition to the second order we introduce the function @
defined by

P =[gls— 2—2—f rAg, dr, (5.11)
0P

a¢ 1 ¢
so that il w—é;/(uﬂ—i-r)k/rl)a, (5.12)
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to the second order. It is shown later that the integral term on the right-hand side is of the third
order at r = ry at positions away from the throat.
The linearized equation then takes the form

02D £ (0D 02D 1 /00 _
(a——)@);y(ﬁ)R— (é‘kﬁ)x“ﬁ(aﬁ)x = (),

and this can be written

AN AN AR aczsl) K .
(W)RJ“T((W)R‘(BF)XJ’E(@T TR (5.13)
where D, = 0D[OR. (5.14)

The boundary conditions to be satisfied are as in § 1.
0D[OR = woysiny (R =rfo, = Ry, X > 0);
=0 (R=0,X>0), (5.15)
0P[0X =0 (X=0,0<R<R).

We need in addition the value of @ at X = 0 and this is obtained from the analysis in the
subsonic region as follows. The variable x is replaced by X;, defined as

_(* 1 (hy+ B3R\
X, _L ocl("—T) dx, (5.16)
and proceeding as above we find
00 £ (00 B0 100, 0 :
(a—)q),ﬁx(‘ax) w R B (517)

together with the boundary conditions (5.15).

The analysis of § 6 is applied to the hypothetical case of the nozzle with parallel flow at the
throat with small values of Ri/D. Thus, as in the two-dimensional case, £ can be taken as zero.
In § 7 the analysis is confined to the throat region with non-parallel flow so that £ can be taken
as unity.

6. THE VALIDITY OF THE LINEAR EQUATION IN THE EXIT CONE OF
AN AXISYMMETRIC NOZZLE

The method of approximation is similar to that in § 2. The radius 7, increases more rapidly
than wt. For example, with y = 1.25, expanding r, from r; to 2r; increases w? from 1.0 to 1.44.

Thus we take oy =1, R=r1fr, 0<RKLI, (6.1)
and, neglecting second order terms, (5.8) can be written as
el [1—{(y—1 1)} w24
O S CELICZRNT 6.2
0ty w?—1

The solution of (5.13) with § = 0 is

oD . L 2 J(A,R) (Xd2C(u) . . .
R wrlem()1+%;X?; |1]E)(A'm))f0 e o Ap (X —u) du—l—%BmJI(/\mR) cosA, X, (6.3)
the summation being over the positive roots A,, of

Jl(/\m) =0,
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while C(X) = wrysin Oy, (6.4)
and the coefficients B,, are obtained from the Fourier—Bessel expansion.

B, Ji(A,R) = (0P[OR)x_, (0 <R < 1).
m
The difference in pressure Ap between the boundary and the axis is given by (2.5) with

d dry\?2
Ag = 5@~ 4u( )

and since f:Jl(/\mR) dR = (1—=Jy(2,)) /A
we find
_dXT1dC | (Xd*C(x) 1—Jy(A) dry\2 .
T dx [2dX+f0 qur S —w)du %Bm AR sin A X] (d;) , (6.5)
where S(X—u) = 2,/\22 lTl(]/T@T) cos A, (X —u). (6.6)
o0\ ""m

The convergence of this series is slow and it has been evaluated by the following method. For

large values of m
A, = mu+nf4, Jy(A,,) = (2/m) cosmm,

so that approximately
2 1-J,(A,) 2k 1

—— 2 cos A, X = (—

2
J— 1
/\2 To(A) )Cos(mn+4n)X.

™ mé cosmn mim?
The series § can be written

2 1—Jy(A,, 2t 1 2
S(X) = %{E ___—___Jo("/\(m) )cos Ap X — (?m“% p— mn-”~12—n§) cos (mm +4m) X}

— (I, = Gy) cos (7 X) + (Fy — Gy) sin (§7.X),

® cosmnX ® sinmnX
where =2 Z , =23 ——.
m=1 M
C 2t » cosmnX G 2% © sinmnX
== —— g = — R
T me1mtcosmn’ T mo1m? cosmmn’

The series F and G can be calculated in the following manner. We have
Fi=31+3(X2—2X) (0<X<1),
while the series F, can be obtained from the Fourier expansion

v COS"”‘X= —4In(2—-2cosnX) (]X] < 1),

m=1 m

the integration of which gives

© sinmrX
2y mer?

X
— — o~ XIn(2—2cos nX) +5 f Xcot (}xX) dX.
" 2 0

Also Xeot (37X) = 2/m {1 —3(37X)? — L (3nX)0— 2, (3nX)0..) (X < 2)
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so that
Fy=—1[n{XIn(2—2cos nX)}
+2[m{X—0.2742X3—0.02706 X5 — 0.00454 X7 — 0.00087.X? - 0.000177X1...}

a form which converges rapidly for X < 1.
The series Gy and G, can be expressed in the integral forms

3 2\¢ |
G] — — (%) (II+I2COS TCX); 02 — (;)fl2sln TCX (le < 1))
. (" xbe—20 dy L xbe~vdx
whete 7)o 14+2e%cosnX+e 2’ 2 | 1+2e“cosmX+e 2

These integrals have been evaluated in the range 0 < X < 1 and for values 1 < X < 2 we use

the formulae
Fi(2—u) = Fy(u), Fy(2—u) =—Fyu),

Gy(2—u) = Gy(u), Ga(2—1) = —Gyu).

The function $(X) is continuous at X = 1.0 but its differential coefficient is discontinuous.
The values are given in table 4.

TABLE 4
X S(X) X S(X) X S(X) X S(X)

0.00 —0.500 0.50 0.071 1.00 0.835 1.50 —0.379
0.05 —0.452 0.55 0.138 1.05 0.283 1.55 —0.393
0.10 —0.399 0.60 0.206 1.10 0.102 1.60 —0.399
0.15 —0.345 0.65 0.276 1.15 —0.022 1.65 —0.399
0.20 —0.290 0.70 0.349 1.20 —0.115 1.70 —0.391
0.25 —0.233 0.75 0.423 1.25 —0.188 1.75 —0.376
0.30 —0.176 0.80 0.500 1.30 —0.246 1.80 —0.352
0.35 —0.116 0.85 0.580 1.35 —0.293 1.85 —0.317
0.40 —0.056 0.90 0.662 1.40 —0.330 1.90 —0.270
0.45 0.007 0.95 0.747 1.45 —0.358 1.95 —0.204

1.00 0.835 2.00 —0.087

The analysis is applied to the conical nozzle of figure 1. The boundary profile at the throat is
of radius R¢ and this mates into the straight line generators of the exit cone, the slope being
continuous. The values of the parameters at this intersection are denoted by the suffix zero. The
terms w, w’, r; and 0, are continuous at this position so that the function C(X) of (6.4) is continuous
but the derivative has a discontinuity such that

(@), G5 = e )

As we see from (6.2) both X and its first derivative with respect to x are continuous. Using the
approximations of (6.1) we can obtain the values of X in the forms (cf. § 2)
2 x i o
== —=5—=) (1 —Lyw; <x <
(e U -trin) ©<x<x)
dry

= X+ flw) )l [2 (x> x), (6.8)

X, and w, being the values of X and w at x = x,. The values of w" and w; are given by (5.3) and
(5.4) and f(w) is the Prandtl-Meyer expansion angle.
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In view of the discontinuity in C at x = x,, (6.5) must be written in the following form for

values of X exceeding X,
dr\2 dX[1dC [dx\ wy(ry)
=Lyl - o\"1)o _
Ag = gw(dx) +dx[ ( ) S(X-X,)

2dX \dX/, R
Xo=e d2C(u) o o X d2C(w) oy ]
+ fo g S(X—u) du+ LH T S(X—u) du (6.9)

taking the limit as ¢-> 0. In this the constants B,, are taken as zero, for we consider the case in
which the flow at the throat is parallel to the axis as in § 2. The function $(X) is numerically —0.5
at X = 0 so that Aq is continuous at x = x,.

Ficure 8. The velocity variation between the boundary and the axis of an axisymmetric nozzle
assuming parallel flow at the throat, 15° cone semi-angle, y = 1.25.

In the numerical example considered the value of the profile radius of curvature at the throat
is Ry = 0.5 and the radius of the throat section is also 0.5. The semi-angle of the exit cone is 15°.
The values of Ag calculated from the formula in which the first term on the right hand side is
omitted, i.e. the linearized form, are given by the continuous curve in figure 8. In addition, (5.1)
has been solved numerically by the method of characteristics and the values of Ag so obtained are
given by the discontinuous curve in figure 8. The agreement is good between the throat and that
position at which Ag changes sign. Thereafter there is a marked discrepancy. We see that the
slope of the curve Ag is discontinuous at two positions. The first of these is at the intersection of
the curved profile and the straight line generators of the exit cone. This corresponds to a value
of X = 0.6717 (x = 0.2588). The second discontinuity occurs at the value X = 1.6717. Since the
boundary is represented by R = 1 and the slopes of the characteristics of (5.13) are * 1, the latter
value of X corresponds to that position at which the characteristic line from the intersection of the
curved profile and the straight line generator cuts the central axis. In the same manner the
discontinuities in the slopes of Ag obtained by the method of characteristics are also at the corre-
sponding positions and the discrepancy in the values of Ag is associated with these discrepancies
in the characteristic lines.

By using the method of characteristics it is found that the characteristic ray which leaves the
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boundary at the intersection of the curved and straight portions cuts the central axis at ¥ = 1.70
whereas according to the above analysis the value of x is 1.03. The velocity at the axis increases
with increasing distance from the throat up to this position but falls on passing through the cusp
that is formed due to the discontinuity in the curvature at the source of the ray on the profile.
This drop in velocity is reflected in the values of Ag on both curves in figure 8 but they occur at
different positions. There are two reasons for the marked discrepancy which are now discussed.

In the foregoing linearized theory the approximation a; = r, has been used as this gives R = 1
at the boundary. The second approximation is obtained by taking

Xo w_l_.(l—{w—l)/(w1>}w2)'%dx (R = rfubry), (6.10)

0 w%‘rl w:—1

so that the boundary is represented by R = w—%. The characteristic ray leaving the boundary at X
arrives at the axis at X +w~%, w having the value at X, and on this basis the critical characteristic
is found to cut the axis at x = 1.28.

The velocity at a point on the boundary not far removed from the throat is markedly larger
than that at the axis and is also greater than the value of w for that section. For example, at the
section containing the discontinuity, the velocity ratio w, is 1.48 at the wall, 1.06 at the axis and
1.25 as calculated from one-dimensional theory. Thus the characteristic ray leaving the boundary
has a slope markedly less than that calculated for the mean over the section. Also, at the section
at which the critical characteristic cuts the axis, the velocity at the axis is greater than that at the
wall. Thus the mean slope of the critical characteristic between the wall and the intersection with
the axis is appreciably smaller in magnitude than that obtained from the change in the value
of X as determined above. Also, to a very good approximation, the change in the Prandtl-Meyer
expansion angle as the ray proceeds from the curved portion of the wall to the intersection with
the axis is twice the angle of turn of the flow, i.e. 26,, where 6, is the angle at the wall where the
ray begins. This rule breaks down beyond the critical characteristic due to the formation of the
cusp. In two-dimensional flow the change in the Prandtl-Meyer expansion angle is ¢, throughout
the nozzle. The discrepancy observed above is associated with this smaller slope of the critical
characteristic and this arises from the marked variation across the section. The discrepancy
rapidly diminishes with increasing values of Ry/ry and at values above 2.0 it cannot be dis-
tinguished from the numerical errors.

If some feature of the flow had been examined which is more representative of a mean effect
across the section, then the discrepancies would be much less marked. This is typified by the
remarkably good agreement between the wavelengths of § 2. This is discussed further in § 8.

7. THE VALIDITY OF THE LINEAR EQUATION IN THE THROAT REGION
OF AN AXISYMMETRIC NOZZLE

The subsonic region in the entry cone is bounded as in figure 1. The curved portions of the
profile fit into the straight line generators which expand into a very large reservoir. The approxi-
mations used are given by (6.1) and (6.2) and neglecting second order terms

X, = f’”i (1 — =1/l + 1)}w2)"2‘dx,

(7.1)

0r 1—w?

x and thus X, assuming negative values.
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The solution of (5.17) with § = 1.0 subject to the boundary conditions

3
ax; (71X B)) =0 (X, =0,0< R<1),
_ dC(Xy) B
= Tadx, (R=1,X<0) (7.2)

can be written

d RACLE) o LA, R) [ [F4:d2C()
ox; (P10 B)) = R==a 3 5= = UO &

[Ky(A(u = X1)) = Ky (= Ay (Xy +))] du

+f _Xidz(/;(zu)[](l(—)lm(Xl+u)) K, (A(X, ))]du} (7.3)

where ¢ is a small positive quantity, the limit being taken as € approaches zero. The terms A,, are
the positive zeros of the Bessel function J;(A,,) and the function K,(z) is the Macdonald form of
the Bessel function of the second kind. The function C(X,) is defined as

C(X,) = wrysinb,. (7.4)

The solution is evaluated for small values of x in order to compare it with the results obtained
by Hall (1962). For small values of x

x = aoX%{ g;; X3+ [(E) (%+§7—27~'6+ 1(;987;)2) +% (%)3]&4...}, (7.5)
where ay = ——itrt( (7; D) rt)
¢
Also C(X)) = —aX2+bXE+eXP+ ...,
where a = ré2(y + 1) /4RE,
b= (9+2y)rial/18Ry, (7.6)

The following Fourier-Bessel expansions are required. The first is

Q= 72;;{%—%3—) —R (0<R<1).

Integrating both sides of this with respect to R between zero and R gives
Jo(AuR) o, 1

D AT B P e W

Multiplying both sides of this latter equation by R and integrating between zero and R we obtain

LR R R. 1 R-R
D o AV AR TR D o B T

since the series on the left-hand side converges in the range 0 < R < 1 andiszeroat R = 1so that

L1 1
B EAV I Rl ¥

By repeating the procedures it is found that

H(AuR) _ —2R+3R— RS

% =25 T 354 (O<k<),
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J(AuR)  —TR+12R®—6R*+ R’

and O =y g " 18432 (7.7)
Also f “K,(z) 2 tdz = ame r(w) 1”(’” + ”)
o 2 2
For small values of X it is found that (7.3) becomes
(D, (X, R))[0X, = [4aX,+ 60X} —6cX7...]Q,
+[—24bn X, +120cm X} ...] Q4 (7.8)
+[360nX,c+...] Q5 '
0B, 00,
For small values of X; X, XIO—X§’
so that (5.17) can be written
2D, 10D, D, 0D,
RTEReR R- i i=0) (7.9)
From (7.7), (7.8) and (7.9) it is found that
@D,(0,R) = 8aQ;—48b7Q5+ 720c7Q, + ..., (7.10)

and @, (X,, R) is obtained by integrating (7.8) with respect to X; between zero and X, with the
value at zero given by (7.10).
. 0D, (X,R) 0
The expression ~R R ?,(X, 0), (7.11)
can be obtained by integrating (7.8) with respect to R between zero and R. This function and
?, (X4, R) together express the variations across the section and it is the validity of these that we
require to check. Hall (1962) expresses the velocity ¢ and the angle of flow 0 in the form

q=1+q/Ri+q/R}+ ...,

1\
o — (Ym_) (04 R+ OofRE+...).

\

The foregoing linearized theory produces identical values of ¢; and 6, to those derived by Hall
but the second order terms ¢, and 0, are discrepant. In table 5 the values of 0, are obtained for
v = 1.25 and Ry[r; = 3.5 at the throat section.

TABLE 5
R Hall linearized theory
0 0 0
0.2 0.0707 0.047
0.4 0.1097 0.076
0.6 0.0987 0.079
0.8 0.0460 0.049
1.0 0 0

The discrepancy can be shown to be due to the approximation made in the term «, of (5.7),
namely o, = r;. This is not valid in the entry cone since w falls rapidly with increasing distance
from the throat. A more accurate theory can be developed under these circumstances but this is
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not discussed here since we are primarily concerned with the flow at the throat and in the
cxit cone.

8. NON-SYMMETRIG FLOW IN AN AXISYMMETRIC NOZZLE, THE DERIVATION OF THE
LATERAL FORCES AND COUPLES AND THE OPTIMUM NOZZLE DESIGN

It is assumed, as in §4, that the nozzle itself is cylindrically symmetric but the flow is asym-
metric due to upstream effects. Again it is required to determine the nature and magnitude of
the flow asymmetry at the exit of the nozzle when the entry flow is asymmetric.

The equation of flow in cylindrical coordinates x, r and 1 become (Shapiro 1953)

0%¢, 0%,  2uv0%¢, 10%¢,
2l Y P _2fo U P 2UVOTP, 22y Y P1
( u/a)6x2+(1 v*fa?) orz g2 6x6r+(1 77/4)726302

2unl %@, 2vum %P, v? a2
it ot o Wil — (1 = 8.1
a? roxdy a? ara§ﬁ+r2(1+”/d) 0, (8.1)
_19¢,
Ty

It is assumed that the non-symmetries are small terms so that their squares can be neglected.

where the notation is as in § 5 and 7

Proceeding as in § 5, the equation becomes

2, 2 )2 ) 2 ¢ 2 < 2 02
02 2% 112(0(/) 1a¢) Lo 2 g 2w (5.

1 0x2

h

+2hy 58

2Oyt y+ 17 or y+ 112007

o2 ror

The last two terms in this equation are small and can be neglected. Multiplying throughout
by siny and integrating with respect to ¥ from ¥ = 0 to 2= we obtain

*H o*H 0?2H 10H H
R A s B

21
where H = f ¢sinyrdyr. (8.3)
0

In order to satisfy the boundary conditions exactly, the function H is replaced by H,, where

e - "w(0¢p/or) dr dyr
Hl*fo ; wfo (w2 +rAfry)E (8.4)

so that M satisfies the same differential equation as H to the first order and also satisfies the
boundary condition
0H[or =0 (r=ry). (8.5)

It is assumed that the flow is symmetric with respect to the plane z = 0 which contains the
principal axis of the nozzle, so that the lateral momentum at the section at x is

L 2T
I :J rf pyuvdyrdr, (8.6)
0 0

where u = 0¢,/0x and v = 0¢);/y as in § 1, or

, 21
~L=af [ Todag,dpar
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The negative sign has been introduced so that L is the lateral force on the nozzle if it terminated
at this section .

The procedure is as in §4. The term p, ¢, is as in that section and

P, = ¢rsmzﬁ+——£cosw.

r oy
Thus L = -wpa%f:rf%(¢rsin1ﬁ+;g§,cos¢)d¢dr+M2 patf f A, dyrdr.
We have '
f f (gbrsmgk—l———%cosgk) d1//d7=f:ﬂsin¢f:(r¢,,+¢) drdyp =7 :“(ﬁsinz//dzﬁ.
Also H, _f slngﬁfragé( -5 )d rdy
f Gsin dyf — f sin ¢ f %f erwzdrdz// (8.7)
so that

L ndg 1A
- 2 _
L = —wpr,at I:(Hl)r=r1 l—fo sin l/ff o o de dgﬁ]

,oabf f Ap, dirdr.  (8.8)

The moment of thrust about the plane z = 0is, as in § 4,
” 2
= f rf Tirsinyrdydr
o Jo
r 2m
= —3(M2— 1)pa%J‘0 rfo rAsin yr diyr dr. (8.9)

Away from the throat the term A is small and in the second and third integrals in the expression

for L it suffices to write
wrdr

¢, = ¢,sin =
/!/ le 1ﬁ3 ¢1‘ 7. dx
Also the rate of mass flow across any section is m where

m = pwayri.

Thus L = —-—@at(H )T—rl M? QCTdh

Ty Ur=n " M1y, dx (8.10)

As in § 4, there is a further relation between L and Cr. Figure 9 is a section of the exit cone of
a three-dimensional nozzle. Clearly

2m drz
rlf {(A[) A[) —1/}7* =1y Sln de dx
Also f d’l{ — (Ap)_} Axy dip + (L + g—f Ax) Ax+ACy = 0,
dCy dr,dL
or *a—);"FL—rlE;a— (8.11)
At x = 0, i.e. the throat, M = 1 so that from (8.9)
Cpr=0 (x=0). (8.12)
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218 A. G. WALTERS

Equations (8.10), (8.11) and (8.12) enable us to express L and Cy in terms of /. Proceeding
asin §4,
dw _ 1—{(y—1)/(y+ D}w* 20 dr,

8.13
dx w?—1 ry dx’ ( )
and to the first order dCyp/dx = — L. (8.14)
L+AL
4
//
/
!
/ /I
/ 10 A
1
! Ay;‘é/ ' n+Aan
1 ! 1/ I - ,
oIt = R
1 - '
¥ T RNA
CT \
| Ct+ACT
\\
\
\\
\\
\
AY
Ficure 9. The force system on a section of an axi-symmetric nozzle.
Substituting these into (8.10) gives
d (wt maywk
—(—Cy) = ———H, 8.1
dx(rl T w2 Y (8.15)
mayry [“wiH
or Cp = 41 f 14, (8.16)
TTwE Jo T{
may d (ry [*wt
to the first order, and L= — H, dx}, (8.17)
m dx w2)o Ty

to the second order. This value L could be substituted into (8.11) to give Cy to the second order.
It is assumed in the first instance that the throat and the exit cone are axially symmetric so
that the non-symmetry in the flow arises upstream of the throat. The flow across the throat is thus
non-symmetric. It is also assumed that the non-symmetry in the flow is sufficiently small not to
affect the mean slope of the characteristic lines at each section.
Equation (8.3) can be linearized in the manner described in § 5 and using the approximation
for a given in § 6, the solution for /, can be written

Hy = 54, 1B R) 1B, X), (8.18)
n
the terms S, being the roots of the Bessel function

Ji(Bn) = 0,
so that By = 1.841, B, =5.331, f,= 8.536,
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and for large values f, = nn—}m. The coefficients 4,, are obtained from the Fourier—Bessel
expansion

Ay = 23| RAR) 26, R) AR [ (g2 1) LA(BT, (5.19)

where fi(R) is the value of H{(R) at the throat. The function I(f, X) satisfies the differential
equation

2/ §dl | .,
W+Xﬁ+ﬂ"1 = 0, (8.20)
with the initial conditions
_ di(g, X) _ _
1(g,X) = 1.0, o= 0 (X=0)
§  (dx\?(d2X  2ww’ dX
and e (ﬁ) (EXE_“_—wz—l-C-l—?;)' (8.21)

Itisseenin § 4 that all of the terms in the series for the two-dimensional form of L are identically
zero for odd integral values of X. The separate terms of H, are not zero at the same values of X
and the values which make H; zero depend to a small extent on the function f;(R). It is usual in
vibration problems for the amplitude of the fundamental to be markedly greater than that of
any of the harmonics, and the fundamental of H; contains I(3; X) only. In the first instance we
concentrate on this fundamental.

At the throat £ = 1.0, and in the region between the throat and the junction of the curved and
straight portions of the nozzle § departs only slightly from unity. Beyond this it falls rapidly in
value. Thus as a first approximation

1(5.X) = Jp(51X) (X < Xp),
= Jo(B1X,) cos fr(X = Xo) =Sy (B Xo) sin B (X — X,) (X > Xy), (8.22)

X, being the value of X at the intersection, and both I($,X) and I’($,X) are continuous at
X = X,. A closer approximation is obtained by numerical integration of (8.20). This has been
carried out with a variety of values of Ri/ry and it has been found that the first approximation is
in good agreement with the numerical solution.

Some justification for the predominance of the fundamental is provided by the following
analysis. The function f;(R) satisfies the conditions

Si(R) =0 (R =0),
dA(R)AR =0 (R = 1),
and we can expect to be able to express it with fair accuracy as a series of polynomials of the form
Ji(R) = b(R—0.5R?) +¢(R*— 1.5R?) + ...,

b,c, ..., being constants. The coefficients 4,, in the Fourier-Bessel expansions of these polynomials
are as follows

Si(R) 4 4, 4, 4
R—0.5R? 0.5139  —0.0113  0.0020  —0.0008
R®—1.5R? ~0.4479  —0.0547  0.0031  —0.0031

Further, the first approximation for /(f,, X) contains the Bessel functions as seen in (8.22). These
fall off in amplitude with increasing values of g, for given values of X. Thus the fundamental
can be expected to dominate the solution particularly at the larger values of X.

17-2
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The lateral force and couple are obtained from (8.16) and (8.17) in which H, is expressed in

the form
Hl = A1Jl(ﬂ1) I(ﬁlX)‘ (8~23)

If [ is the distance between the centre of gravity of the rocket and the nozzle exit then the
turning moment about the centre of gravity due to the non-symmetry of the flow is
LI+ Cy. (8.24)

Thus X, and hence #, is determined from (8.16), (8.17) and (8.23) which makes this turning
moment zero. The values of X and x so derived are independent of 4,, that is, the nature of the
asymmetry of flow at the throat. Typical values of L and Cy are given in figure 10 in which the
function I(f, X) has been deduced by numerical integration of (8.20).

p-
(@)

0.8

Cy/D
i

?
x/D

—0.4-

TFicure 10 (a). The variation of the lateral force L with exit cone length.
(b). The variation of the couple Cy; with exit cone length.

The foregoing analysis is concerned with the design of a nozzle which eliminates the turning
moment about the centre of gravity which would otherwise arise from the non-symmetry of flow
into the nozzle, the nozzle itself being perfectly symmetric. When hot propellants or long times
of burning are employed, it is necessary to introduce into the throat region an insert of a refractory
or other suitable material. This extends some distance into the exit cone and even though it is
mated into the exit cone with very close tolerances, it is found that the hot gases produce very



NON-SYMMETRIC FLOW IN LAVAL TYPE NOZZLES 221

severe erosion at the intersection. This appears as a deep jagged-edged pit around the circumfer-
ence and is unlikely to be symmetric. It thus creates non-symmetry in the downstream flow. The
turning moments which can arise from this can also be eliminated by correct design as
demonstrated in the following paragraphs.

Using the approximations for X and R given in § 6 we suppose the erosion is around the
circumference at X = X,. At this position the flow is assumed to be symmetric. Thus

H, = 0H,/0X = 0, (X = X.), (8.25)

and we specify the asymmetry by

OH,[0R = K, Xe< X < Xe+AX, (R=1), (8.26)
=0, X>X.+AX, (R=1). } '
First it is necessary to solve the equation subject to condition (8.25) and
OHJOR =K, X> X, R=1.
The solution is given by ~ H, = KR+ ¥ 4, J,(#,R) I{,(X - X.)},
the summation being over the positive roots f,, obtained earlier and
1
Ay = =252 [ RU(B, R AR [ (82~ 1) [ (BT
0
1
We have [RAVRCEIENATRIS
0
and since Ji(p,) =0
the recurrence relations for the Bessel functions give
Thus Ay = =2/(Br—1) Ji(B,).
Similarly, the solution H, satisfying the boundary conditions
OH,J0R = —-K, X>X.+AX (R=1),
H, =0H[0X =0, X=X+AX (0<R<1),
, S(BuR)
S Hy = —~KR+2K 3, 70 (B, (X— X, — AX)).
1 1 (=D RATARG )
Taking AX as small, the value of H, satisfying the conditions (8.26) is
o Puhi(B,R) d
H, = —2KAX Aol Hp,(X—X.)} 8.27
1 Rl 7R PAVALI R (527

It is convenient to take 2KAX = 1, i.e. the unit of the asymmetry. In the previous analysis it was
found sufficient to take only the first term of the series but this series for H, converges very slowly;
it is in fact conditionally convergent when X, > X, for in this £ can be taken as zero and (4, X)
becomes cos 3, X.

At R = 1 assuming X, > X, H, = }:/ e 1 sin 3, X. (8.28)
n fFn b
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In the first instance it is necessary to know the values of X at which this is zero. The larger roots

B, are given by f, = nm—1ir.

Consider the series S = § %sin (nm—1m) X.
n=1
Thus H—S:Z[ﬂ—sinﬁ X—isin(n—l)nX (8.29)
1 " ﬂﬁ—l n n 4 . .

This converges much more rapidly. The first five terms are given in table 6 for X = 1.73 and
X = 1.83.

TABLE 6
n X =173 X = 1.83
1 0.2227 0.1194
2 0.0528 0.0314
3 0.0229 0.0211
4 0.0047 0.0127
5 —0.0032 0.0070

The series converges absolutely. Also

1 1 .
= =8, cosinX—=C;sininX,
- 1 1 T 1 4 )

where S;=3 1sin nnX, C; = §} -l-cos nrX.
n=171 n=17
These are S =1in(1-X), C;=-%In[2-2cosnX].

Thus S can be evaluated and H, is obtained by using the first five terms of the series for A; —S.
Some values are shown in table 7.

TABLE 7
X H,
1.67 0.4202
1.69 0.3869
1.71 0.3507
1.73 0.3111
1.75 0.2675
1.77 0.2192
1.79 0.1665
1.81 0.1077
1.83 0.0402

By cxtrapolation the zero of H, is found to be at X = 1.841. The zeros of the turning moment
can be obtained by an analysis as above but this is lengthy and is not reproduced here. The
conditions under which these results are valid are discussed in the following paragraphs.

If the terms in ¢4 are neglected in the expression for X given by (5.8), it can be written with

in which the mean value of ¢2 across the section has been written

(8.30)

H2 — 12602
2 = Juwisin®0,,

0, being the flow angle at the boundary of the section.
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The mean value of w, across the section differs only very slightly from the value of w obtained
from one-dimensional theory. This has been confirmed by determining w; from the characteristic
diagram with Ri/ry = 1.0 and a total exit cone angle of 40°. Typical values are given in table 8.

TABLE 8
mean velocity across mean velocity across onc-dimensional

x[2r, a diameter the area theory
0 1.0068 1.0068 1.000
0.08682 1.107 1.155 1.165
0.1294 1.166 1.226 1.246
0.1710 1.228 1.298 1.328
0.25 1.360 1.440 1.451
0.35 1.454 1.536 1.563
0.45 1.554 1.625 1.649
0.60 1.679 1.703 1.750
0.80 1.809 1.832 1.854
1.00 1.912 1.918 1.934
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Ficure 11. The velocities in the exit cone of an axi-symmetric nozzle assuming parallel flow at the throat as
determined by the method of characteristics; (i) on the boundary, (ii) on the axis; R,/D = 0.5, y = 1.25,
cone semi-angle 20°, w, = 1.0065.

The values of w, on the axis and at the boundary are given graphically in figure 11. The
example considered in § 6 is hypothetical, since parallel sonic flow is assumed across the throat
whereas in general there is a large variation in w, across the throat section as is shown in § 7. The
mean value of w; across the throatsection is not unity, and thus the term e which defines the zero
of Xin (5.8), is not zero. The throat section makes a large disproportionate contribution to X and
thus relatively small values of € can introduce significant errors. Also, since w, varies significantly
across the throat, the mean value of the integrand in (5.8) for X differs markedly from that
obtained by using the mean value of w; in the integrand. Further, it is seen in § 6 that the large
variations in w, give rise to a large variation in the slopes of the characteristic rays crossing a
section and the position for zero lateral thrust could then be influenced by the form of asymmetry
of the flow at the throat. The variation of w; across the sections reduces rapidly with increasing
values of Ry/ry and for values above 2.0 the errors do not appear to be serious. The conditions for
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isentropic flow at the throat require the curvature of the boundary profile to be continuous at the
throat section. The discontinuity in curvature at the intersection of the curved profile and the
straight line generators of the exit cone affects the entropy only in that part of the flow beyond
the cusp on the axis and this is of little concern in practical nozzles.

The term w? in the expression for o, has been ignored and, as is shown in § 6, this significantly
changes the slopes of the characteristics. However the above formulae for L and C; remained
unchanged as is now demonstrated. The nozzle length is divided into segments over each of
which w? can be taken as constant. In one such segment

R =rfrwt, X, = (X-X,)|o}

wt being the mean value along the length, X is defined as in (6.2) and X, is the value of X at the
leading face of the segment. The solution for H; becomes

H, = 2 4, J,(8,R) L,(8,X,) + X B, Ji(0, R) IZ(anXl)a
where 1,(8,, X;) and 1,(6, X;) are solutions of (8.20) in which X and S, have been replaced by
X, and 6, respectively and
Il((snXl) = 1'05 dll(anXl)/Xm = 0’ (Xl = 0)’
1,(d,X,) = 0, dIZ((snXl)/Xm =1.0 (X, =0),

the constants 4, and B,, being determined by conditions at X; = 0. The terms 8, are determined
from the boundary equation

dJ(6,R) 1
—ar - Regp
thus 8, = B,
so that Hy = 2 4, Jy(Br[ry) L{ B (X = Xo)} + X B, Sy (Byr(ry) L4, (X — Xo) }

and this is identical to the value of H, given by (8.18) for the equation takes the same form when
expressed in terms of X or X.

It is concluded from the analysis that the formulae for L and Cy given by (8.16) and (8.17)
are valid provided that the variations in w, across the sections are not excessive. This requires
that Ry/ry > 2.0 and the exit cone angle should not exceed 30° total angle. However, greater cone
angles can be accommodated with greater values of Ry/ry.

9. EXPERIMENTAL INVESTIGATION OF NON-SYMMETRIC FLOW IN AXISYMMETRIC
NOZZLES AND THE VALIDITY OF THE OPTIMUM NOZZLE

The static experiments were carried out with the ‘all forces dynamometer’ which was
designed to measure the complete thrust vector on the rocket model employed. The model
comprised a steel tube of 336.6 mm length, 69.9 mm outside diameter and 6.35 mm wall thickness
into which was inserted a solid cylindrical steel nozzle with machined entry and exit cones. The
propellant charge of 291 g of cordite burned at a pressure of approximately 69 bar for one
second, producing a fairly constant thrust of 580 N. The nozzle throat diameter was 10.41 mm.
By taking suitable precautions during assembly and cleaning, the model was fired repeatedly
with negligible changes in mechanical tolerances.
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Ficure 12. The ‘all forces dynamometer’.

(Facing p. 224)
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TFreure 25. Targets showing the yaws and flight deviations of the 8 in (20 cm) test vehicle with the asymmetric
entry cone and with exit cone lengths of (top) 272 mm and (bottom) 157 mm.
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Ficure 22. The 200 mm test vehicle.
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Ficure 26. Composite picture of the targets showing the variation of the flight deviation with nozzle exit cone
length. (), Orientation left; @), orientation right.
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The dynamometer is shown in figure 12, plate 1. The rocket model is mounted vertically
downward to eliminate the effect of the charge weight during burning. The complete specifica-
tion of the thrust vector requires three forces and three couples in orthogonal directions and thus
six gauges are required. The output from these was measured on a six-channel photographic
galvanometer recorder, the calibration being a system of weights over pulleys. The apparatus
was checked by bevelling the exit plane of a nozzle and measuring the thrust malalinement so
produced. This agreed with the calculated value to better than 59%,.

Ficure 13. The experimental nozzle with total exit cone angle of 6.6° and canted inlet cone.
10+
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Ficure 14. The dynamometer measurements of the lateral forces and couples with
the nozzle of figure 13.

18 Vol. 273. A.
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The first experiments were carried out with a nozzle of 6.6° total exit cone angle. The inlet
cone was made skew by machining it up to the throat as illustrated in figure 13. Four firings were
carried out with the full length nozzle. In each case the plane of symmetry of the nozzle was
placed in the plane of one of the gauges, the orientation in the second and fourth firings being
at 180° to the first and third to remove any dynamometer bias. The length of the nozzle was
subsequently shortened by 12.7mm at each of four stages, the firing procedure described for the
full-length nozzle being repeated at each stage. Thus we obtained four thrust malalinement
measurements at each of five nozzle exit cone lengths, the final being 50.8 mm shorter than the
original. At this stage the limit was reached, for with further shortening the nozzle became
recessed into the tube and so the results would have been affected by the projection of the tube
beyond the nozzle exit.

(i) (if)
Ficure 15. Typical dynamometer records. (i) At the maximum of the curve of figure 17; (ii) at the near-zero of

the curve of figure 17. The bottom curve in each case is the axial thrust, the second being with a reduced scale
to allow greater magnification of the lateral thrust.
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In the text the thrust malalinement is resolved into a lateral force L acting at the exit plane of
the nozzle, and the couple C; which is the product of the axial thrust and the displacement of
this parallel to the nozzle exit cone axis. These are usually expressed as ratios of the axial thrust
and are quoted in milliradians and millimetres respectively. The lateral thrusts so obtained with
the 6.6° total exit cone angle are given in figure 14, a smooth curve being drawn through the mean
points at each length. The galvanometer traces are remarkably consistent within themselves and
could be analysed without much difficulty. The records and results show the performance of
the dynamometer to be satisfactory. Each experimental point in figure 14 is obtained from the
mean lateral force during burning, omitting the two transient stages, i.e. the initial rise to the
working thrust and the concluding fall-off. During these transient stages the velocity at the throat
is not sonic so that the theoretical analysis is not valid. Typical records are given in figure 15
which show the smoothness of the traces.

The conclusions from the experiments are evident from figure 14. The curve of the lateral
thrust against the exit cone length exhibits the oscillatory form expected theoretically with zero
values at exit cone lengths of 53.6 and 86.6 mm.

In the nozzle used in the above experiments, the exit cone fitted into the throat with no
radiusing after the throat (figure 13), while the profile of the entry cone had a radius of 10.41 mm.
On linearized theory the condition for zero lateral thrust is

2tan (3.3°) 1.841

S(w) (BT 01,2,3,..),

where f(w) is the Prandtl-Meyer cxpansion angle at the exit of the nozzle as calculated from
one-dimensional theory. Thus

fw) = 0.1965(n+ %), } (9.1)

and A4y = (14 0.01106x)2,

the term on the left-hand side of (9.1) being the expansion ratio of the nozzle from which w is
obtained and xis the exit cone length in mm, the throat diameter being 10.41 mm. The theoretical
zeros are given in table 9.

TaBLE 9
zero (as numbered

from the throat) X S(w) A4/A4, x[mm
1 0.853 0.098 1.055 2.44
2 2.56 0.295 1.294 12.5
3 4.27 0.491 1.728 28.5
4 5.97 0.688 2.49 52.3
5 7.68 0.884 3.90 88.1
6 9.39 1.081 6.61 142.2

The fourth and fifth zeros are at 52.3 and 88.1 mm which are remarkably close to the experi-
mental values of 53.6 and 86.6 mm. Also the direction of the lateral force is in agreement with
the theory. The experiments were repeated in part with a second nozzle to check that the agree-
ment was not fortuitous. Firings were carried out with this at the two longer exit cone lengths and
the zero lateral thrust position was found to be at the exit cone length of 87.6 mm which confirms
the first measurement.

An examination of the records and experimental technique indicated that the ratio lateral
force to axial thrust could be measured to within 0.25 mrad. The exit cone was inserted into the
motor body with screw thread attachment extending to the length of 38.1 mm. Measurements

18-2
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of a batch of tubes and nozzles of this type gave a mean value of the mechanical malalinement
between the axes of the nozzle exit cone and the tube of 0.3 mrad circular error. In these experi-
ments the nozzle orientation relative to the tube was fairly constant from round to round so that
this mechanical malalinement probably enters as a systematic error.

The lateral force measurements are obtained from the sum of the forces on the gauges whereas
the couple Cy is obtained from the differences of the moments. The measured ratios of the couple
to the lateral thrust, i.e. the parallel displacement, is of the order of a few hundredths of a mm
and it has been found that the measured values are not sufficiently precise. The values given in
figure 14 show the random scatter arising. Nevertheless the mean curve does exhibit the features
expected from the linear theory, i.e. the oscillatory nature of the curve and the zero value at the
maximum value of the lateral thrust.

g
<
s 7
£
i
S /
=
] \ 18.5°
b1o° o — |

- L-~2.5"1 mm

TFicure 16. The experimental nozzle with the total exit cone angle of 18.5° with canted inlet.

The subsequent programme was designed to check the theory at large exit cone angles. The
model rocket is a convenient vehicle for this investigation from the point of view of economy and
ease of manipulation butits small scale exacts a penalty in the increased importance of mechanical
tolerances. These tolerances can be classified into two types. The first type produces lateral forces
but does not affect the value of X to a significant extent at downstream sections. The second type
can change the mean Mach number in some region and thus change the value X to a significant
extent. The latter type need not arise in service nozzles, but in small scale nozzles very consider-
able care must be taken in manufacture, particularly in the region of the throat. The nozzle
chosen for the second series of experiments is illustrated in section in figure 16. The throat was
located by means of the short parallel-walled section and the inlet and exit cones were mated into
this at sharp junctions. The inlet cone was offset ten degrees to produce the systematic lateral
force, the exit cone angle being 18.5°. The manufactured nozzle appeared satisfactory, having
a smooth exit cone and a well defined throat of length 2.0 mm. The results are given in figure 17.
The measured maximum lateral force ratio is 15 mrad, and it is zero at an exit cone length of
22.2mm. The records and results are satisfactory and the lateral force exhibits the oscillatory form
expected. The spread in the individual values at the lateral thrust zero is one milliradian as against
a spread of the order of five milliradians at the maximum position. Thus it would appear that the
random lateral forces arising from malalined gas flow into the nozzle are also minimum at the

lateral force zero.
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On linear theory, the lateral thrust is zero at exit cone lengths satisfying the equation

fw) (4= c
Ttan (9.25%) Taar = 0L23), (9.2)

and the values are

X 0.853 2.56 4.27
x[mm 4.06 27.4 88.9
20
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Ficure 17. The dynamometer measurements of the lateral forces with the nozzle of figure 16.

Ficure 18. The curve derived from the right-hand side of (9.3) with the experimental values of L and C, from
figure 17.

From the directions of the lateral forces it appears that the experimentally observed zero
corresponds to X = 2.56 and x = 27.4mm. Thus the observed value is discrepant with the
theoretical value based on linear theory. To compare the results with nonlinear theory, the
values of the lateral forces and couples are substituted into the right-hand side of the following
equation which is derived from (8.10).

é(:03(1.841){) = ——rl[ = f(X), (9.3)

L M2-21drnCq
T

T irdx T
and the resulting curve is given in figure 18. The best estimates of the zero positions are at
X = 2.28 and 4.0, the latter being approximate. The left-hand side of (9.3) is zero at values of
2.56 and 4.27. Thus both zeros are displaced, the wavelength being approximately correct,
which would suggest a zero error.

The experiments were repeated with a similar nozzle but which had a throat length of 3.5 mm
and a total exit cone angle of 14°. The results are given in figure 19. The values of the lateral
thrusts and couples are substituted into the right-hand side of (9.3) and the resulting curve is

18-3
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given in figure 20. Itis seen that the expression is zero at X = 3.60 and the directions of the lateral
thrust indicate that this corresponds to the theoretical zero X = 4.27. Again there is a marked
discrepancy between theory and experiment.

It is unlikely that this is due to the failure of the theory at the larger cone angles since the
discrepancy is greater with the fourteen-degree cone, which, however, has the longer throat. To
examine this, the experiments were repeated with the total exit cone of 18.5° but with some
modifications. The entry cone of figure 16 was replaced by the standard type entry cone of
figure 13 which was machined asymmetrically to produce the systematic lateral flow at the
throat. The length of the throat section was reduced to 0.50 mm and there was a smooth junction
of the inlet cone with the throat to reduce the possibility of the formation of a vena contracta at
the throat. The results are given in figure 21. The exit cone length for zero lateral force is 25.1

® 40
6 B
B e [
®
4} . .
] ° ® X
- e ° 201~ °
°
g x
21 £
&~ ° g - °
”:] ° :%O\ ® (-]
[~ [
S - s o
n.e.cl/mm %
| L.g [ | | o | ] X
0 ) 60 30 s 3 « 4 5
(-]
| ]
o o e :
-2 ° °
[ ]
X
° —20}-
®
__4.__
Ficure 19 Ficure 20

Fieure 19. The dynamometer measurements with the nozzle of 14° total exit cone angle.
Frcure 20. The curve derived from the right-hand side of (9.3) with the experimental values of L and C, from
figure 19.

which is closer to the theoretical value of 27.4 mm obtained from linear theory. The nonlinear
expression on the right-hand side of equation (9.3) is zero at X = 2.44 which is closer to the
theoretical value 2.56. A small correction should be applied to these latter figures to allow for
the slight erosion of the originally sharp junction of the throat with the exit cone. Examination of
the sectioned nozzle showed that the junction was eroded into a smooth curve 0.25 mm long
which corresponds to a radius of curvature Ry = 1.8 mm. From formula (6.8) it can be shown that
this increases the value of X by an amount 0.14 so that the experimental value of X = 2.44
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becomes 2.58 which compares favourably with the theoretical value of X = 2.56. The close
agreement is possibly fortuitous but it is clear that the theory and experiment agree within
experimental error. This nozzle was of mild steel and showed greater erosion at the junction
than that made of standard nozzle material.
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Ficure 21. The dynamometer measurements with the nozzle of 18.5° total exit cone angle
but with the short throat.

The reason for the discrepancy with the 14° cone and the first 18.5° cone is now clear. The
phenomenon by means of which it occurs is undoubtedly that observed by Fraser, Rowe &
Coulter (1957) at Imperial College. With a sharp junction at the throat, the flow separates from
the wall just upstream of the throat and reattaches just downstream. There is a significant drop
in thrust due to the reduced flow and velocity coefficients at the throat so that the effective throat
is less than the mechanical value. With the parallel-walled throat its position is also upstream of
the junction with the exit cone. This gives rise to the zero error noted earlier.

Thus it would appear that the experiments confirm the theoretical analysis, provided the
throat configuration is as assumed in the theory, i.e. profile slope and curvature continuous at
the throat.

Small scale experiments such as these are not suitable for precise quantitative measurement
and so these experiments were followed by flight tests with 200 mm test vehicles simulating a
flight rocket (figure 22, plate 3). These were constructed from discarded nitrogen cylinders
which were adapted to take a conventional conical head and nozzle. The charge mass was
6.72kg with burning time 0.25s and working pressure 69 bar and delivering a fairly constant
thrust of 53 kN. The burning chamber wall-thickness was 4.19 mm with an internal polyethylene
lining 2.5 mm thick for heat insulation. Consequently there was negligible bending of the tube
due to such factors as non-symmetric heating and wall-thickness variation. Before projection
each vehicle was balanced by adjusting a system of weights in the head so that the nozzle exit
cone axis was alined to pass through the centre of gravity of the complete vehicle. The overall
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weight was 93kg, there being some variation in this due to the different nozzle designs. The
round-to-round variation in launch angular velocity was reduced to acceptable limits by using
a carefully made launcher 4.05 m in length. The launch velocity was 71.3 m/s and the distance
of free flight during burning was 15.2 m.

Denoting the aerodynamic restoring moment at yaw & and velocity ¥V by K(V, 8), the restoring

moment coeflicient » is defined by
n? = K(V,8)[1V?,

I'being the moment of inertia about a transverse axis through the centre of gravity. The value of »
for the test vehicle was 0.050 m~" with the fins employed. The deviations in the directions of
motion of the centre of gravity at the end of burning relative to the line of launch due to

(i) a thrust malalinement of 1 mrad,

(ii) alaunch angular velocity of 1°/s,

(iii) a cross-wind of 1 m/s,
were calculated to be 0.10, 0.023 and 0.020° respectively. The dispersion in flight due to the
random effects was found to be 0.028° linear mean deviation. This would result from a thrust
malalinement of 0.28 mrad or a launch angular velocity variation of 1.2°[s linear mean values.
The first of these corresponds to a circular mean value of 0.46 mrad.

The systematic lateral force was obtained by offsetting the entry cone axis as in the model
tests. Thus the throat and exit cone axis were symmetrical to the rocket and the systematic gas
malalinement was due to asymmetry previous to the throat. The offset in the entry cone was
designed to give a thrust malalinement of 10 mrad maximum value so that systematic flight
deviations were much greater than the random values.

N

Ficure 23. Sketch of the nozzle used with the 200 mm test vehicle.

The test vehicles were projected at cardboard targets supported on wire-netting screens at
a range of 55m. Just previous to firing, the nose was daubed with black paint which became
imprinted on the target. This, together with the fin cuts, enabled us to obtain the position of the
centre of gravity of the vehicle when it struck the target to + 12mm laterally. The nozzle was
placed in the tube with its entry cone axis in the plane of two fins which were placed horizontally
on the launcher so that the systematic deviations were entirely in the horizontal plane, with the
rounds orientated alternatively right and left to remove any systematic launcher and wind effects.
The sand bay behind the target collected the rounds which suffered negligible damage and could
be used repeatedly.

Eight nozzles were made with exit cone total angles of 18.5° as in figure 23. The eight were
first fired with an exit cone length of 272 mm and subsequently four were fired at each of the
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lengths 246, 221, 196, 157 and 145 and eight at 170 mm. The results are shown graphically in
figure 24 which gives the separation between the positions of strike at the target of the centre of
gravity of pairs of rounds fired with the orientation alternatively right and left. It is seen that the
separation is zero with an exit cone length of 161 mm. It is convenient to express the orientation
by the thinnest side of the wall of the entry cone looking along the line of flight. With this to the
left, the rockets deviate right when the exit cone length exceeds 161 mm but deviate left when
below this length. At 246 mm the entry cone axes were inadvertently not placed in the plane of
a pair of fins but were inclined to it by angles up to 25° which explains the departure of these
results from the general pattern, the horizontal deviations only being measured. Figures 25 and 26,
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Ficure 24. The separation of the centres of gravity at the yaw cards of similar rounds with their orientation
alternately left and right. Comparison of the theoretical curve with the experimental points for different
nozzle exit cone lengths.

plates 2 and 3, show typical target photographs. Figure 26 is a photograph of the targets placed
one above the other starting with 272 mm at the top to 145 mm at the bottom. Circular disks are
placed over the imprints of the nose, dark disks with the orientation right and white disks with
it left. The effect of the length of the exit cone on the magnitude and direction of the deviation is
thus made evident.

The deviating forces on the test vehicle comprise the turning couples L/ and Cy, and the lateral
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force L acting at the centre of gravity which is at the distance / from the exit plane of the nozzle.
The contribution from the latter can be neglected. It is convenient to express the couple in terms

of the ratio
B = (Li+Cy)[IL,

where Ly is the value of L at the throat and is thus independent of the exit cone, Cy being zero at
the throat section. The ratios L/L;and Ciy/Ly are calculated from (8.16) and (8.17). The deviation
of the path of the centre of gravity at the end of burning is

0.10 x 1038Ly/ T degrees,

T being the axial thrust. The deviation is zero when £ = 0 and thisis calculated to be 155 mm
exit cone length which agrees well with the experimental value of 161 mm. L; could have been
calculated from the inlet cone configuration but this has not been done. The value of L; can be
chosen so as to give the correct deviation at 272 mm exit cone length and the theoretical curve
with this value is given in figure 24. The form of the curve is the same as that of the experimental
points. The directions of the deviations are also in accord with theory.

The experiments were continued with nozzles of 30° total angle. Four nozzles were constructed
all having expansion ratios of 6:1 but with different throat configurations. Two had a throat
profile curvature such that Riy/D = 1.0 and two such that R¢/D = 1.5. In each case systematic
malalined flow at the throat was obtained by non-symmetry in the entry cone. These were
projected against targets as in the previous trial with the paired rounds orientated alternatively
right and left. The measured angles of turn at the targets were

Ri/D = 1.0 —63mrad - 60mrad
Ri/D = 1.5: 19mrad 22 mrad

The positive direction is that which would have been obtained with zero exit cone length. Linear
interpolation indicates that zero turning moment is obtained at Ri/D = 1.37. With a value of
v = 1.25 the theoretical null point is at Ry/D = 1.43 and with y = 1.20, Ry/D = 1.36. The actual
value of y lies between these two values. This good agreement must, however, be qualified.
The asymmetries in the entry cones were designed to give the same lateral momentum at the
throat section but these could not be achieved due to interference between the tool and the nozzle;
at the higher value Ry/D it was completed manually. Plaster casts of the entry cone were not
sufficiently precise in the important region approaching the throat to make the necessary correc-
tion but qualitatively they indicated a smaller lateral momentum at the throat of the nozzles
with Ry/D = 1.5 so that the inferred null point is at a value Ri/D < 1.37, This lower value is not
unexpected. The propellant charges were built from thin sheets which broke up appreciably
during burning. It is unlikely that the lateral momentum of the particles of charge is reversed
in the nozzle and also the resulting non-isentropic flow produces lower Mach numbers at the
various sections of the exit cone. Both of these factors lower the value of Ry/D for zero turning
moment. Within the limits of the experiments the agreement with theory is satisfactory.
Finally some limited trials were carried out with the flight test vehicle to examine the correct-
ness of the optimization of the nozzle exit cone in removing any thrust malalinement arising from
non-symmetric erosion at a section of the exit cone as discussed in § 8. Four nozzles with exit cones
of 30° total angle, expansion ratio 4:1 and Ri/D = 1.56 were constructed with symmetric entry
cones. The exit cones were gouged to simulate non-symmetric erosion. The gouge was in a plane
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perpendicular to the exit cone axis; it was 38 mm long, 6.4 mm wide and approximately 3.2 mm
deep. The vehicles were projected at yaw cards at 24.4 m range in a closed tunnel. The resulting
yaws were immeasureably small and it would appear that the thrust malalinements were less
than 0.2mrad. The position of the gouge was at a distance from the exit plane of the nozzle
corresponding to a difference in X of 1.80 so that theoretically the yaws would be expected to be
zero. The tests should have been continued to determine the effect of the gouge at other positions
but this was not possible owing to other commitments. Thus it is uncertain to what extent the
optimization was responsible for the very low values of the yaws.

The author thanks Dr R. J. Rosser for his constant encouragement during the investigation and
his advice on the experimental programme. The ‘all forces dynamometer’ was designed by
Mr J.F. Waddington who also supervised the initial experiments. Mr B. Trenear and Mr B.
Bodimeade also assisted in the experimental programme while a large part of the numerical work
was carried out by Miss J. M. Yendall. The author wishes to express his thanks to these colleagues
for their invaluable assistance.
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Ficure 12. The ‘all forces dynamometer’.



IiGure 25, Targets showing the yaws and flight deviations of the 8 in (20 cm) test vehicle with the asymmetric
entry cone and with exit cone lengths of (top) 272 mm and (bottom) 157 mm.



Ficure 22. The 200 mm test vehicle.
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Ficure 26. Composite picture of the targets showing the variation of the flight deviation with nozzle exit cone
length. (), Orientation left; @), orientation right.
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IicurE 15. Typical dynamometer records. (1) At the maximum of the curve of figure 17; (i1) at the near-zero of
the curve of figure 17. The bottom curve in each case is the axial thrust, the second being with a reduced scale
to allow greater magnification of the lateral thrust.



